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Notation

Lower case letters denote scalars, underscored lower case letters denote
vectors, and capital letters generally denote matrices.

A = state transition matrix

Aij =  element of the Hessian of negative log-likelihood function

or Fisher Information approximation to the Hessian
B = system deterministic input matrix

Bij = element of gradient of negative log-likelihood function

b = signal bias or random walk standard deviation

C = system output matrix
cl = inverse of exponentially correlated noise time constant
c2 = exponentially correlated noise scaling parameter

det() = determinant operator

dp = Brownian motion differential

EH } = expected value operator
H = fractional Brownian motion dimension parameter

I = Fisher Information matrix

i = -4i when not used as an index
K = Kalman filter gain matrix

L = system plant noise input matrix

In [ I = natural logarithm operator
min(tl,t2) = minimum value of t1 and t2

N( ,(y2 ) = normally distributed with mean g and variance (y2

Pr(o) = probability of the event •

p (x;) = probability density of x as a function of the parameters -Q
p(zl,...,ZN; ) = probability density function of the random variables

Z1, ..., ZN as a function of the parameters a
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p(x I;ly,) = conditional probability density of x given the random

variable y as a function of the parameters a
p(z(tk) I z k-1) = probability density of z(tk) given z(tk-l), z(tk-2), .., Z(to)

r = Kalman filter pre-update residual
S = covariance matrix of a multivariate normal distribution

tr [ I = trace operator
tk = time index

u = deterministic input vector
VH = variance of unscaled fractional Brownian motion

X = Fourier transform of x(t)

x = state vector or vector valued stochastic or deterministic
process

= optimal estimate of state vector

z = measurement vector [z1,...,ZN] T

= vector of unknown system parameters

= parameter estimate
= maximum likelihood estimate of parameters
= Brownian motion process

PH = fractional Brownian motion process
7)0 gamma function
At = discrete time increment

Ay(tk) = increment between measurements at time tk and at time
tk-1

Aa = parameter adjustment

5(t) = delta (impulse) function

8(j) = discrete form of delta function

jk = Kronecker delta (1 if j = k, 0 otherwise)

= negative log-likelihood function (sometimes without
constant)

0 = covariance of discrete white measurement noise
= white measurement noise vector
= mean of measurements

covariance of discrete white plant noise
= white plant noise vector

= covariance matrix
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a = standard deviation of a random variable
GH = standard deviation of fractional Brownian motion

(D,, =  two-sided power spectral density of x
1
xx = one-sided power spectral density of x

6DXX = estimate of power spectral density function

51 = estimate of one-sided power spectral density functionxX

,y = correlation function of stationary processes x and Y

Xy = estimate of correlation function

xy(tktk+j) = correlation function of nonstationary processes x and y

co = probability space

* = convolution operator

SI = magnitude operator

Subscripts
i = ith element of a vector

ij = ijth element of a matrix

Superscripts

T = transpose operator
* = complex conjugate

-1 = matrix inverse

Acronyms

fBm = fractional Brownian motion
FIMLOF = Full Information Maximum Likelihood Optimal Filtering

PSD = Power Spectral Density
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Chapter 1

Introduction and Summary

1.1 Modeling Noise Processes and Estimating Noise Parameters

In this thesis, maximum likelihood estimation is applied to estimating

stochastic noise parameters for both Markov and non-Markov noise
processes. Dynamic parameters, such as trend, were simultaneously

estimated with and separated from stochastic parameters. The goal was to

develop methods of determining unknown parameters in models of systems

which exhibit power spectral densities proportional to f0, where -2 P [3 < 0.

There are many naturally occurring systems with PSD proportional to
fP. This behavior can persist over a wide frequency range [44]. The particular

value p = -1 is indicative of what is called flicker or 1 noise. Since no simple

Markov noise process can have this frequency domain characteristic for more

than a narrow frequency band, these systems are commonly approximated

using a combination of several independent Markov processes [21].

An alternate approach is to model such a noise process using fractional

Brownian motion [261, which has PSD proportional to f03 (-3 < P1 < -1) for all

frequencies, where P is determined by a parameter of the process. The

increment process of fractional Brownian motion, called fractional Brownian

noise, has PSD proportional to fIO (-1 < [ <1) for all frequencies.

Because the Markov approximation to fractional Brownian motion can

be implemented in state space form, this model is commonly used in

applications where the goal is to develop a control law for a system [21]. Due
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MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL BROWNIAN MOTION

to its minimum parameter form for representing fI3 noise, the fractional
Brownian motion model is more frequently used in applications where the

goal is to analyze a given signal, e.g. image processing [24].

Even though fractional Brownian motion (fBm) has stationary self-

similar increments, they are not independent and fBm is not a Markov

process. This means that state space models and Kalman filter estimators

cannot be applied to the parameters of the process.

A Kalman filter estimator could be applied to estimating the stochastic

and dynamic parameters of a Markov process modeled with a state dynamic

system. The parameters would be estimated along with the states by
augmenting the state vector and using an extended Kalman filter (the

augmented system will be non-linear, because the dynamic parameters

generally multiply the states, even if the original system is linear in the

states). This is a somewhat artificial approach which might not converge [411.

As an alternate approach, maximum likelihood system identification

can be applied to estimating the stochastic and dynamic parameters in a state
dynamic system in conjunction with using a Kalman filter to estimate the

states. The maximum likelihood technique can also be applied to estimating

the parameters in a non-Markov noise process such as fractional Brownian
motion simultaneously with other dynamic and Markov noise parameters.

The classical Fisher maximum likelihood approach has many desirable

properties, and is naturally applied to these problems. The results of this

thesis show that it can be applied successfully.

New in this thesis is the use of partial derivatives in estimating

fractional Brownian motion parameters, rather than a brute force search for a

maximum of the likelihood function. Also new in this thesis is the

estimation of other noise parameters and trend simultaneously with the

fractional Brownian motion parameters. In addition, trend, white noise,
random walk, and exponentially correlated noise parameters are estimated

for a Markov state dynamic system model. This thesis provides a concrete

example of this generally accepted procedure.
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Chapter 1: Introduction and Summary

1.2 Background Material

1.2.1 Maximum Likelihood Estimation

Chapter 2 discusses the properties of parameter estimators in general
and maximum likelihood estimators in particular. For any estimator, the
Cramer-Rao lower bound applies with the covariance of unbiased parameter
estimates being greater than or equal to the elements of the inverse of the
Fisher information matrix [45]. The Fisher information matrix is the expected
value of the Hessian of second partial derivatives of the negative log-
likelihood function, where the likelihood is the probability density of the
observables as functions of the parameters [451. Rigorous calculations show
that the Fisher information matrix is also equal to the expected value of the
dyadic product of the gradient of the negative log-likelihood, which only
involves first partial derivatives [45].

Maximum likelihood estimation seeks parameter values which
maximize the likelihood function (or minimize the negative log likelihood),
which means that parameter values are chosen that make it most likely that

the observations that did occur would have occurred. Under many
circumstances, maximum likelihood estimates have desirable theoretical
properties, such as being asymptotically consistent, unbiased, efficient,
normally distributed about the true parameter values, and attaining the
Cramer-Rao lower bound [45].

Determination of maximum likelihood estimates in non-linear
problems is done iteratively starting from a first guess for the parameter

values. The adjustments to the parameter values at each stage of the iteration
are determined by solving a set of linear equations whose coefficient matrix is

the Fisher information approximation to the Hessian of the negative log-
likelihood function.
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1.2.2 Power Spectral Density Analysis

Chapter 3 discusses stochastic processes, the autocorrelation function of

a stochastic process, and the Power Spectral Density (PSD) which is defined as

the Fourier transform of the autocorrelation function.

The autocorrelation is the expected value of the product of the

stochastic process values at two different times. For a stationary stochastic

process, the autocorrelation is only a function of the difference of the two

times. For an ergodic stationary stochastic process, expected value ensemble

averages can be replaced by time averages over any realization of the process.
Therefore, an estimate of the autocorrelation function of an ergodic stochastic

process is the time domain autocorrelation over a finite interval of a

particular realization from the process, divided by the time interval [341.

The Fourier transform of this estimate of the autocorrelation function

is an estimate of the PSD of the process. By the frequency domain properties

of time autocorrelation (Appendix A), the estimate of the PSD is then equal to

the magnitude squared of the Fourier transform of a finite time span of the

particular realization of the stochastic process. Finally, this estimate of the

PSD can be computed using the discrete fast Fourier transform of samples

from the realization [34].

PSD analysis is employed as an adjunct to the time domain estimation

of stochastic noise parameters. It is checked that sample paths generated
using random number generators and employing the estimated parameters

have the same PSD as that of the original data.

1.2.3 Markov Noise Processes

Chapter 4 discusses the Markov and Martingale properties for

stochastic processes, the Weiner random walk and white noise processes,

stochastic integrals and differential equations, exponentially correlated noise,
and ways of simulating noise processes.
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Chapter 1: Introduction and Summary

The Markov property is that the expected vaiue ol the future given the

present and the past is equal to the expected value of the future given the

present [18]. This is an expression of the principle of causality from physics

for stochastic processes. In-so-far as non-Markov behavior is seen in nature

(such as f0 noise over a wide frequency band with -2 < P < 0), one could

suppose that it is due to not having enough states in the model of the natural

system. However it may be inconvenient to have as many states as would be

required to practically model the noise.

A martingale is a stochastic process for which the expected value of the

future is equal to the present [13]. A Weiner random walk process P(t) is a

Gaussian process with stationary independent increments. It is a martingale
with E{[ (t 2)-P(t 1 )]2 } = 0 2 I t2 -tl1 , and it provides a model of the Brownian

motion that a small particle buffeted by fluid molecules undergoes. It is

almost surely continuous and non-dif-erentiable [18].

White noise can be considered as the approximate derivative of a

Weiner process. The 0 and -2 log-log PSD slopes of white noise and random

walk noise are derived. The -2 and +2 log-log PSD slopes of trend and

quantization noise are also derived.

The Ito stochastic integral is defined relative to the differential dp of a

Weiner process. The differential in terms of increments of the process can be

used, even though the derivative does not exist. The independent

increments properties of the Weiner process are heavily used, so that, for

example, the stochastic integral could not be defined relative to the

differential dIH of a fractional Brownian motion process. Results about the

integration of stochastic differential equations are stated.

The stochastic differential equation for exponentially correlated noise is

given, and its PSD is computed. The log-log PSD slope is 0 at low frequencies

transitioning to -2 at high frequencies, so that a number of exponentially

correlated noise processes could be used to approximate a -1 log-log PSD slope

over a finite frequency band.

A technique is described for simulating these various noise processes

using a random number generator on a computer.
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1.2.4 Fractional Brownian Motion

Fractional Brownian motion 13H(t) is defined in terms of a certain

stochastic integral relative to a Weiner process differential dp. The integrand
is in fact that used in the ordinary calculus definition of fractional derivatives

and integrals. Thus fractional Brownian motion can be considered as the

fractional derivative or integral of ordinary Brownian motion, depending on

the value of the parameter H in the definition (0 < H < 1). It reduces to

ordinary Brownian motion when H = 1

Fractional Brownian motion has stationary and self-similar but not
independent increments with E{[H(t2)-PH(tI)] 2 } = GH2 I t2-tlI 2H. It is unique,

in that any stochastic process with these properties is fractional Brownian

motion multiplied by a constant.

The autocorrelation function of fractional Brownian motion (fBm) is

calculated, from which it is derived that its log-log PSD slope is (-1-2H). This
is done by showing that the fBm derivative process has log-log PSD slope

(1-2H).

Two techniques for generating simulated fractional Brownian motion

sample paths using a random number generator are presented.

1.3 Summary of Maximum Likelihood Fits to Real and Simulated Data

1.3.1 Maximum Likelihood System Identification for Markov Processes

Chapter 6 discusses maximum likelihood system identification for a

state dynamic system model, and applies the technique to estimating trend,

white noise, random walk, and exponentic' .y correlated noise parameters in

real and simulated data.

Maximum likelihood system identification runs a maximum

likelihood estimator on dynamic and stochastic parameters and a Kalman
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Chapter 1: Introduction and Summary

filter on the states. This technique is sometimes called Full Information

Maximum Likelihood Optimal Filtering (FIMLOF).

The general system identification formulas are presented for a discrete

linear dynamic system with a vector observable, and then for the specific case

discussed in this thesis of a scalar observable that is the sum of a trend, white

noise, random walk, and exponentially correlated noise. The system

identification formulas were coded in computer software to run a Kalman

filter on the states given a first guess to the parameters, adjust the values of

the parameters using the partial derivatives of the log-likelihood function

which are generated in running the Kalman filter, and repeat the process

until convergence is obtained to the maximum likelihood estimates of the

stochastic and dynamic parameters. A Cramer-Rao lower bound for the

uncertainty of the paramcter estimates is provided by the inverse of the

Fisher information matrix which is calculated during this process.

The results were that the FIMLOF method provides an accurate

estimate of Markov noise parameters if a sufficient number of measurements

are available. The accuracy of such estimates was verified by comparing the

Cramer-Rao lower bound to the estimation error in the case of computer

generated sample paths where the "true" parameter values were available.

When the method was applied to experimental data displaying a -1 log-log

PSD slope, the frequency response characteristics of the model using Markov

noise parameter estimates matched those of the real system.

1.3.2 Maximum Likelihood Estimation of Fractional Brownian and Other

Parameters

In Chapter 7, the likelihood function for the sum of fractional

Brownian and other Gaussian noise processes is computed from the

autocorrelation functions of the processes, for both the increment and sum of

increment formulations. The iterative determination of trend, fractional

Brownian, and Markov noise parameters was coded on a computer using this

expression for the likelihood function with an N x N measurement

covariance matrix, where N is the number of observations. Fits to simulated
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data were done with N = 128 and with N = 200. There are obvious

computational difficulties for very large N. The non-Markov nature of
fractional Brownian motion, with correlations extending over all

observations, makes this batch approach rather than a sequential approach

necessary.

Using this approach, it was possible to accurately estimate both

stochastic and deterministic parameters in cases involving combinations of
computer generated sample paths of fractional Brownian motion, trend, and

white noise. The accuracies of these estimates were verified by comparing the

Cramer-Rao lower bound to the estimation errors. However, when fractional

Brownian motion was combined with exponentially correlated noise, N = 200

measurements were insufficient to allow the algorithm to converge. At this

point, the need for more measurements came into conflict with the

computational expense of inverting the N x N measurement covariance

matrix and calculating its partial derivatives.

A successful estimation of fractional Brownian motion parameters was

also made using the -1 log-log PSD slope experimental data that had been

used in FIMLOF estimation.
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Maximum Likelihood Estimation

2.1 Parameter Estimation

The goal of this thesis is to estimate the values of unknown parameters

in the models of fractional Brownian motion and Markov noise processes.

The information that is available for use in this estimate is a set of

measurements of the output of the model. There are several methods which

are available for use in problems of this sort. Maximum likelihood

estimation is chosen because of its simplicity and its well documented

favorable properties which will be presented in this chapter.

2.2 Likelihood Function and Negative Log-Likelihood Function

Let z = [Z1, ..., ZN]T be observations or measurements at times t1, ..., tN of

some system involving dynamic and noise processes dependent on

parameters a = [a 1, ... , aq]T. The likelihood function is the joint probability

density of the measurements as a function of the measurement and

parameter values:

P(9;9 = p(z 1, ... , ZN; a1, ... aq) (2.2-1)

Since p(_;zq) is a probability density,
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J p(-;-) dz = 1 (2.2-2)

Taking partial derivatives of both sides of the above equation yields

f i -i jP(-;-) dz = 0, fI dz = 0 (2.2-3)

The negative log-likelihood is the negative of the natural logarithm of

the likelihood function:

(_; = - ln[p(z_)] (2.2-4)

The maximum likelihood estimates for the parameters _a are the values that

maximize the likelihood function or equivalently minimize the negative

log-likelihood function given a set of measurements z.

2.3 Fisher Information Matrix

The Fisher information matrix is the expected value of the Hessian of

second partial derivatives of the negative log-likelihood function:

Iij = E '_ (2.3-1)

where E{ } denotes expectation (integration over the probability density of the
random variable). As will be explained in the sequel, this matrix provides a

measure of the information contained in a parameter estimate.

It will be useful to have a simplified expression for the information

matrix which does not involve second partial derivatives. By

Equations (2.2-3) and (2.2-4)

-f a2 n[pz..Iij A "Ijc d2np(;z

f 'p- ( ] ,) dz

28p(z;a
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f P g dz

+ f I ap(z a ap(,g pza)d

p( ;.,)2  aa i aj

a _______g )]aln[p(Z)]

E { (z; 1)aC(;] } (2.3-2)

2.4 Cramer-Rao Lower Bound

An estimate dj of a parameter aj is a function of the measurements:

fj = fj(zl, ... , ZN) (2.4-1)

As a function of the measurement random variables it is also a random

variable. The function fj cannot be arbitrarily chosen if the parameter
estimate is to have good properties. One desirable property of an estimator is

that it be unbiased:

E{} = true value of (2.4-2)

Another desirable property is that its variance be small, although there is a

lower bound as to how small it can be.

In the case of a scalar parameter, if U is an estimate of the parameter ox

then [7]

f (W - a) p(z;a) dz = b(a) (2.4-3)

where b(ax) is the bias associated with the estimate. Assuming that p(z;a) has

a first derivative and taking the partial derivative of each side gives
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f ' [(d - a) p(z;a)] dz = b'(a) (2.4-4)

where b'(c) is the derivative of the bias with respect to a. Taking the

derivative of the product gives

a

- J p(za) dz + j (U - a) p(z;a) dz = b'(a) (2.4-5)

( -) -l ; p(;a) d_ = 1 + b'(a) (2.4-6)

At this point, the Schwarz inequality for integration with respect to the
measure p(z-a) dz may be applied to give

J (r - a)2 p(_;a) dz f { ln[p(z;a)] )2 p(g;a) dz > [1 + b'(a)] 2 (2.4-7)

Finally, using the definition of the expected value operator and the scalar
form of Equation (2.3-2) leaves a lower bound for the variance of an estimate:

[1 + b'(a)] 2
E{(d - ax) 2 1 ! I -(2.4-8)

This lower bound is known as the Cramer-Rao lower bound. Equation (2.4-8)

shows that for an unbiased scalar estimator, the Cramer-Rao lower bound is

equal to the inverse of the Fisher information matrix, which has specialized

to a scalar.

In the case of an unbiased estimate of q unknown parameters, this
lower bound generalizes to [451

E((- o) 2} - I-1 > 0 (2.4-9)

which means that every element of the covariance of the estimate must be
greater than the corresponding element of the inverse of the Fisher

information matrix. Thus the Cramer-Rao lower bound for the variance of

the ith parameter estimate is equal to [I-1 1ii. In this manner, the Fisher
information matrix provides a measure of the amount of information an
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estimator employs by providing a limit to the accuracy with which each
parameter may be estimated.

2.5 Properties of Maximum Likelihood Estimates

As stated in Section 2.2, maximum likelihood estimates

= , &q]T of the parameters are those for which the likelihood function

p(z;_) is a maximum, or equivalently for which the negative log-likelihood
z is a minimum. In other words, maximum likelihood estimated

parameter values are such that it is most likely that the observations that did

occur would have occurred.

In order for maximum likelihood estimation to be carried out, it is
necessary that for two different parameter vectors _%' and g", the joint
probability density of the observables that occurred should not be the same:

p( z;!Q') # p( _;o") (2.5-1)

As stated at the start of this chapter, one reason for using maximum
likelihood estimation in this thesis was the fact that it has favorable

properties. These properties are that as the number of measurements
approaches infinity, the maximum likelihood estimate is consistent, efficient,
and sufficient. These properties are explained in the following paragraphs.

If an estimate fL converges in probability to the true value a of a

parameter vector , as the number of measurements N--, it is called a

consistent estimate of Qz [45]. This means that the estimate is unbiased and the
covariance of the estimate goes to zero as the number of measurements
approaches infinity.

If an estimate ft is an unbiased estimate for . such that no other

unbiased estimate has a smaller variance, then it is called an efficient estimate

of . [45]. An asymptotically efficient estimate is efficient as the number of

measurements becomes large.
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If - is an unbiased estimator for ji such that for any statistic Q (function

of the observables z), the distribution of the conditional random variable =Qi

does not depend on 1, then a. is a sufficient estimator for a[45].

If z = [z 1, ... , ZN]T are independent measurement random variables
with the same probability distributions q(zj;-q), so that the joint density is

p(-z;-) = q(zi;a)...q(zN;0J, then the maximum likelihood estimates [ 1 ... ,

are asymptotically consistent, efficient, sufficient, normally distributed about

the true value _i, and the Cramer-Rao lower bound becomes tight [45].

If the measurements are not independent identically distributed
random variables, it can be shown [28] that the maximum likelihood

estimates are still asymptotically consistent, unbiased, efficient, and normally

distributed abouL the true value . However, this requires that the first,
second, and third partial derivatives of the likelihood function exist over the
admissible range of parameters. Thus, maximum likelihood estimation is
still attractive, and the Cramer-Rao lower bound remains a useful measure of
the accuracy of the estimator in the limit of a large number of observations.

2.6 Iterative Determination of Maximum Likelihood Estimates

Let %" = [ , &,q]T be the maximum likelihood estimates of the
parameters a. For these values the likelihood function is a maximum, or the
negative log-likelihood is a minimum:

V(;W = minimum (2.6-1)

where z [z1, ... , ZN]T are the measurements. This means that

a(Ki  I = = 0 , i = 1,...,q (2.6-2)

Let ao = [a 1 o, ..., zqo ]T be first guesses for the values of the parameters,

with
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Aaj = j-ctjo , j = 1,..,q (2.6-3)

Given ,o and the measurements z = [Zl, ... , ZN]T, the negative log-likelihood

function C(z;- o) is calculated along with its first and second partial derivatives
with respect to the cci in order to determine the adjustments Aaj to the first

guesses cjo-

Approximating Equation (2.6-2) with the first two terms of a Taylor

series expansion gives

0= aa0ai  a7-=

Iz.a 2  + 2 I(;_) A (2.6-4)aai I %--_o I~ a0aiaOcj I 2=7Q 0

This leads to the following set of linear equations to solve for the update Aaj
to the guesses ajo to approach the maximum likelihood estimates a:

q
E A 1 Avj = Bi  , i = 1, ...,q (2.6-5)
j=1

where

B =, i = 1, ...,q (2.6-6)Bii =- 2i

Aij = a2(-;j I , i,j = 1, ... , q (2.6-7)

The expected value of the coefficient matrix Aij is the Fisher

information matrix. As an approximation, Aij can be replaced by its expected

value, obtaining by Equations (2.3-1) and (2.3-2)

Aij = E { a(- ; 2)1 I , i,j =1, ... ,q (2.6-8)a0 i  aafj = ..

With the Fisher information approximation to the Hessian of the
negative log-likelihood function, only the gradient vector of first partial

derivatives of the negative log-likelihood function need be calculated. In
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some cases in which both the exact and approximate Hessians were calculated
in this thesis, the Fisher information approximation gave better iterative

convergence to the maximum likelihood parameter estimates than using the

exact Hessian (see Section 6.6).

Using the new values of the parameters obtained by solving
Equations (2.6-5), the negative log-likelihood and its partial derivatives are re-
calculated and further adjustments Aaj are made to the parameters. The

iteration continues until convergence is obtained to the maximum likelihood

estimates of the parameters.

2.7 Relation to Least Squares Estimates

Suppose the measurements zk are related to theoretical model

functions fk by

Zk = fk(tk;Q) + Ek , k=l,...,N (2.7-1)

where Ek are independently normally distributed zero mean random errors

with standard deviations 8k . The likelihood function is

1 - I (zk-fk(tk;W) 2 /(28k 2) (2.7-2)
p() = (2 c)N/2 81 ... N e

Maximum likelihood estimates of ( which maximize Equation (2.7-2)

or minimize the negative log-likelihood

N= [ln(2) + ln(81-. N)] + 1 N (zk-fk(tk;_fl 2  (2.7-3)
k=1

are the same as weighted least squares estimates which minimize the I term

in Equation (2.7-3), presuming that the constant part in brackets [ does not

depend on a1, ..., aq.

The condition for a minimum is
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_q)0 N zk-fk(tk;) . afk(tk;.)4)

X(ki I 8k2  i - 0 when = (2.7-4)

The Fisher information matrix Equation (2.6-8) is

N 1 fk( fk(-
Aij q= , i,j = 1,...,q (2.7-5)ki l 8k 2 aOai aOc

since the partial derivatives of the fk are non-random functions and the

Zk - fk are independently normally distributed zero mean random variables

with standard deviations 8k.

The same set of linear equations for the adjustments to first guesses for

the parameters as Equations (2.6-5), called normal equations in least squares

estimation, can be obtained from Equation (2.7-4) with a first order Taylor
expansion for fk without any statistical assumptions or second partial

derivatives. Namely, let %0 = [a1 o, ..., amo] T be first guesses for the values of

the parameters, with Equation (2.6-3) giving the adjustments Aaj towards the
least squares estimates &j. Assume that

N fk(;o) Acx (2.7-6)
f(; = fk(z--2 0 ) +

fk(L.) fk( o) (2.7-7)

Inserting Equations (2.7-6) and (2.7-7) into (2.7-4) yields Equations (2.6-5), with
Aij being given by Equation (2.7-5).

Thus, least squares estimation involves the same calculations as

maximum likelihood estimation, but if the statistics of the measurement
errors Ek are known, maximum likelihood theory allows the Cramer-Rao

lower bound to be applied, with a lower bound for the covariance of the least

squares, maximum likelihood estimates being the inverse of the coefficient

matrix of the normal equations.
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2.8 Relation to Other Estimators

The maximum likelihood method described in the previous sections is

known as classical or Fisher maximum likelihood estimation. The state

estimator used in a Kalman filter is called a Bayes estimator, because it

involves conditional expectation. Namely, the Kalman filter estimate of the

state x at a given time tN in a state dynamic system is the expected value of

the state given the observations Z1, ..., ZN up to that time and the initial

probability density of the states at time to.

If a stite dynamic system involves unknown parameters g. which are

to be estimated, then the state vector x could be augmented by states a with

dynamic equation do. = 0 + noise. However, the expanded state dynamic

system is generally nonlinear (involving products of x and _q), even if the

original system e, uations were linear in x. Nonlinear systems require the

implementation of an extended Kalman filter. Convergence can be a problem

for an extended Kalman filter estimate of x and q [23].

The approach taken in Chapter 6 to estimate the parameters _q in a state

dynamic system is to apply maximum likelihood estimation to the probability

density p(z.) of the observables z as a function of the parameters .Q generated

by running the Kalman filter to estimate the states assuming values for _%.

This probability density is not written p(z I ), because no conditional

probabilities are involved, as there is no prior probability information about

In Chapter 7 maximum likelihood estimation of -% is applied to a

probability density p(_ g) arising from a fractional Brownian noise process,

with no Kalman filter involved. It is a non-Markov process and the Kalman

filter derivation depends on the Markov property (see Section 4.7).

The Bayesian maximum a posteriori probability (MAP) estimator is

slightly different from the Fisher maximum likelihood estimator. Instead of

maximizing the probability of the measurements as a function of the

parameters, this method consists of maximizing the probability of the

parameters as a function of the measurements [17]. This probability is found

using Bayes' rule
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p(Q Iz) = p Wp( ) 2.8p Uz)(281

Note that the negative log-likelihood function of Equation (2.8-1) is

)= - ln[p(z I ] - ln[p(.)I + ln[p(z)] (2.8-2)

The difference between this equation and Equation (2.2-4) is that

Equation (2.8-2) requires the probability densities of _% and z. If there is no
prior knowledge of the distribution of the parameters, this distribution must

be assumed uniform because all parameter values are equally likely. In

addition, p(z) must also be assumed uniform because this distribution is a

function of the unknown parameters Q. In this case, neither p(_) nor p z) is a

function of the parameters themselves, and the MAP or Bayesian maximum
likelihood estimate reduces to the classical Fisher maximum likelihood

estimate.
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Chapter 3

Power Spectral Density Analysis

3.1 Stochastic Processes

A stochastic, or random, process consists of a family of random
variables which are taken from a probability space co and indexed by a

parameter t. These processes, which may be vector valued, are commonly
written as x(t,w) or simply xj(t). A random process is distinguished from a

deterministic process by the fact that the latter is known exactly over the time
span of interest while the former involves some element of chance.

A stochastic process may be placed into one of four categories based
upon the associated probability space and index [18] The probability space
may be either continuous or discrete, and the index may also be either

continuous or discrete. Random variables drawn from a discrete probability
space may only take discrete values though there may be an infinite number
of possible values to choose from. The set of integers is an example of a
discrete probability space. A continuous probability space allows random
variables to take any value within a specified range. The set of real numbers
is an example of a continuous probability space. This thesis will only consider

signals defined on continuous probability spaces, i.e. systems with unknown
parameters that may take any value within a given range. The distinction

between continuous and discrete indices is analogous to that between
continuous and discrete time systems. In fact, the index will be considered to
be ti. ie throughout the remainder of this thesis.
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A sample path or realization of a stochastic process is the time function
x(t,o) for a fixed value of 0o. Different sample paths of the same stochastic
process will not, in general, be identical. The set of all possible sample paths
of the process is called its ensemble.

3.2 Autocorrelation Function of a Stochastic Process

One way to characterize stochastic processes is to use correlation
functions. The correlation function of two processes x_(t) and y(t) is defined to

be the expected value of their product at different times tj, t2 [8]:

4xy(tl,t2) - Ef(t 1 ).y(t 2)T} (3.2-1)

In general, oxy is a matrix with the element [0xy]ij given by the scalar

correlation function

[0y(t,t2)]ij = E{xi(t) yj(t2)} (3.2-2)

The units of a correlation function are equal to the product of the units of the
signals of interest.

The correlation function of a process with itself is called its
autocorrelation function and is given by

Oxx(tl,t2) = E{x(tl) x(t2)T} (3.2-3)

In this special case, the diagonal terms are actually the autocorrelations of the

scalar processes which make up the vector x(t) and the off diagonal terms are
known as the cross correlations between the individual scalar processes. The
autocorrelation function of a process is essentially a measure of the
dependence of the value of the process at one time with its value at other
times.

The covariance function of a random process is found by subtracting
the mean from the process and calculating the autocorrelation of the
resulting signal:

covk(tl,t2)] = E{ k(ti) - W(ti)][(t2) - A(t2 )]T } (3.2-4)
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where

11(t) = E{L(t)} (3.2-5)

The fact that the autocorrelation function of a zero mean stochastic process is

equal to its covariance will be of use in Chapter 7.

A stochastic process is called stationary if its probability density is not a

function of time [8]. This means that none of the statistics of the process will

be functions of absolute time. A stationary random process is analogous to a

time invariant deterministic system. The autocorrelation function of such a

process will depend only upon the difference between the time indices

'r = tl - t2 . The autocorrelation function of a stationary process is even, i.e.

xx()= p(-). This may be illustrated using the change of variable s = t + t:

0,,(,t) = E{x(t+t)x(t)} = E{x(s)x(s-t)} = 4x(-t) (3.2-6)

Note also for a stationary process with s = t + 2

0,,x() = E{x(t+t)x(t)} = E{x(s + 2)x(s - 2)} (3.2-7)

An ergodic process is a stationary process that has the additional

property that time averaging over a particular realization is equivalent to

ensemble averaging, so that in particular

T

Oxx() = lim - J x(t+t) x(t) dt (3.2-8)
T- )- -T

for any realization x(t) [6]. This is a useful property to have when dealing

with experimental data because it is not common to have a large set of sample

paths available for use in ensemble averaging.

3.3 Estimation of the Autocorrelation Function

For a scalar, ergodic, stochastic process, given a span of data x(t) where

-T < t < T, a change of variables in Equation (3.2-8) shows that an estimator for

the autocorrelation function is given by [34]

41



MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL BROWNIAN MOTION

Fiz

2

Oxx(tC) = 42 J '2 x(t ') x(t-j) dt , I I < 2T (3.3-1)1'
Fil

-T+-
2

It will be useful in Section 3.5 to note that the autocorrelation given in
Equation (3.3-1) is similar to a convolution of x(t). Appendix A reviews the

definitions of correlation and convolution and provides some useful

relations.

If p(o) is the probability density of the stationary, ergodic process x(t)
then the expected value of the estimate (3.3-1) is given by [34]

oo 2
E{ xx(-O}L = _. T+, x(t+2) x(t-2) dp(o) dco

1 T -r

=( f-- f x(t+-21) x(t-2 ) p(w) dcd

2

IITI
2

=2T f x(' 2)b qaio 327

-T+2

Equation (3.3-2) shows that the estimate of the autocorrelation function
which is given by Equation (3.3-1) is unbiased in the limit as T becomes very

large with respect to tc [34]. Multiplying xx() by (1 - I' I /2T) -1 will also make

the estimate unbiased.
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3.4 Power Spectral Density of a Stationary Stochastic Process

The power spectral density (PSD) of a stationary random process is

defined to be the Fourier transform of its autocorrelation function [8]

00

(D)"(f) f Jx(,c) e-2 f d'c,-<f< (3.4-1)

-00

where f is frequency in Hz and i = ff-l. The PSD has units equal to (units2 )/Hz

if the process x(t) is measured in units.

Because the autocorrelation function of a stationary stochastic process

is even, the PSD is also even so that the one-sided PSD is equal to [5]

00

-21rift(ixlxcf e -2(3.4
2 J ~x(t) e dc , f > 0 (3.4-2)

-00

( 1 (f) = (Dxx(f) + cxx(-f) , f > 0 (3.4-3)

The one-sided PSD is often used in analyzing data where it is convenient to

regard frequency f as being positive, whereas the two-sided PSD is more

convenient for mathematical proofs.

As will be shown in Chapters 4 and 5, different types of stochastic

processes have their own characteristic PSD shapes. This makes the PSD

useful for determining the frequency range where a given process is more

prominent in a given signal.

3.5 Estimation of the Power Spectral Density

3.5.1 Continuous Data

It is often desirable to determine the PSD of a stationary, ergodic, scalar

stochastic process from a finite sample path of that process. One way to do

this is to take the Fourier transform of the estimate of the autocorrelation

function defined by Equation (3.3-1) [34]:
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2T

= i() e dc (3.5.1-1)
-2T

or

i2Txx(f) = f X(t+ 2) x(t2 ) dt e -  dr (3.5.1-2)

2T-2T _ , I

Note that this integral is only evaluated between -2T and 2T because the

estimate of the autocorrelation function is only defined on this region and is

assumed to be zero outside of it.

Taking advantage of the fact that xx is an autocorrelation of x(t),

assumed zero for I t I > T, Equation (A-6) in Appendix A shows that

Equation (3.5.1-2) may be expressed as

.(f)= ) X(f) X*(f)

- I X(f) 12 (3.5.1-3)

where X(f) indicates the finite Fourier transform of x(t), and X*(f) indicates its

complex conjugate.

The finite Fourier transform of x(t) is given by
T

T -2iifr
X(f) = f x(,) e dt (3.5.1-4)

-T

when x(t) is defined over the interval -T < t < T. This is equivalent to taking

the integral from negative to positive infinity and setting x(t) equal to zero

outside of the range defined by T.

The one sided PSD estimate is given by

ci ( = 1 IX(f) 12 , f > 0 (3.5.1-5)
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The expected value of the estimate of the PSD is given by

[xI ' e-27rift

E{cxx(f)} = f () e d] p(co) d&o

-0 2T'× }e 2 i d
2T

f Ej~xxr)) e-2,rift d

-2T

2T I'C -2rifr

f J (1 - YX(t) e dc (3.5.1-6)
-2T

Equation (3.5.1-6) shows that the estimate of the PSD will be unbiased
as T becomes very large, i.e., as the span of available data becomes very large:

00

lim E{Dxx(f)} = J x() e -2ni ft dc
T---

= xx(f) (3.5.1-7)

3.5.2 Interpretation of the PSD as a Power Spectrum

The power in a time function x(t) is

T

Total Power = lim J I x(t) 12 dt (3.5.2-1)
T--O_

T

Average Power lim ±-J I x(t) 12 dt (3.5.2-2)
T-o2 TT

Let X(f) be the Fourier transform of x(t):

00

X(f) f x(t) e "2 if t dt (3.5.2-3)
-00
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The inverse Fourier transform is [34]

001 2irift
x(t) = J X(f) e df (3.5.2-4)

-00

Plancherel's formula is [401

00 00

2n J Ix(t)12dt = J IX(f)12df (3.5.2-5)
-00 -00

Thus the total power in the time signal x(t) multiplied by 2n is the same as the

total power in the Fourier transform X(f), so I X(f) 12 may be interpreted as

giving the power split up into frequency components, or as the power density

as a function of frequency.

If x(t) is real, then X(f) = X(-f). In this case, the power over all

frequencies is equal to twice the power in the positive frequencies:

J IX(f)12df = 2 J IX(f)12df (3.5.2-6)
-00 0

This fact confirms the validity of the one-sided PSD.

The PSD as the Fourier transform of the expected value of the

autocorrelation function is estimated by Equation (3.5.1-3), so that

(Dxx(f) -xx(f)

1- IX(f)l 2  
(3.5.2-7)

average power in x(t) broken

into frequency components
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3.5.3 Discrete Data

It is most common for data to be taken at discrete times using a digital

computer. Assuming that the samples of the continuous process x(t) are

evenly spaced in time from -T to T, Equation (3.5.1-4) is approximated by

N-1 -2ifl(k+.5)At-TA
X(f) I x[(k+2':)At-T] e - 1 i ( + ' ) t T At (3.5.3-1)

k=0

where

At =2 sec (3.5.3-2)

Define the discrete function

Xk = x[(k+l)At-T] , k = 0, 1, ..., N-1 (3.5.3-3)

and the discrete Fourier transform

N-i

Xi = Y Xk , j = 0,1,..., N-1 (3.5.3-4)
k=0

Equation (3.5.3-4) has a rigorous discrete inverse Fourier transform [6]

1 N-i 2rijk/N

xk = N I x e , k = 0, 1, ..., N-1 (3.5.3-5)
j=0

For j = 0, Equation (3.5.3-4) shows that ?-- is the average or mean of the data.

For numerical reasons, the mean is often removed from the data without

affecting the remaining Fourier transform coefficients, in which case the DC

term becomes X0 = 0.

The discrete equivalent to Plancheral's theorem is Parseval's theorem

[40]

N-i N-1

X i2 = N Ixk 2  (3.5.3-6)
j=0 k=0

This theorem shows that the power density interpretation of the continuous

PSD holds for the discrete PSD.
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Substituting Equation (3.5.3-3) into Equation (3.5.3-1) yields
N-i

-2icff(At/2 - T) -2irifkAtx(f) = e Xk e At (3.5.3-7)
k= 0

so that except for the phase change from the complex exponential in front of

the summation sign due to the shift in the time origin (which does not affect

the PSD), the discrete Fourier transform of Equation (3.5.3-4) approximates the

continuous Fourier transform at discrete frequencies fj by

X(fj) _ Xj At (3.5.3-8)

with

- L- T 1 Hz (3.5.3-9)
fj = NAt 2T

Using sampled data over a time span 2T with time spacing At and

2T = NAt, the discrete Fourier transform is thus computed at a frequency

spacing of
1

Af = Hz (3.5.3-10)

If x(t) for -0 < t < - is a band-limited signal such that X(f) = 0 for
If I > F, and Xj is the discrete Fourier transform of samples of x(t) at a

sampling interval At with

N N 1
NAf 2T - NAt - At 2F

then x(t) can be exactly reconstructed from Xj [11]. Thus the finite Fourier

transform given by Xj will contain all of the magnitude information about the

time series x(t) only if the sampling frequency is greater than 2F. This is the

Nyquist criterion. If the time series x(t) is not band-limited, then the lower

frequency discrete Fourier transform values will reflect energy from the

higher frequency components of the signal. This phenomenon is known as

aliasing [6].

If the data xk are real, Equation (3.5.3-4) shows that
• rNl

XNj = X , j = 1,2,..[, (3.5.3-11)
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where [ is the largest integer less than or equal to N-. This dependence is

due to the Nyquist criterion. Information is only available about the power
1

content of the signal at frequencies up to 1

The fact that the discrete Fourier transform has been defined for

positive frequencies and the Nyquist criterion combine to limit the range of

available frequency information to 0 <_ f < 1-. Thus by Equations (3.5.1-5) and2At~

(3.5.3-8), the estimate from a finite span of sampled data of the one-sided PSD
at frequency fj is

x f = T I XJ 12 'J = 0, 1, .. ,2 (3.5.3-12)
-1 At 2

A N- N,2h1 2 if N is odd
T= (3.5.3-13)

IxPN/, 2 if N is even

Equation (3.5.3-13) guarantees that the one-sided PSD maintains the
symmetry required by the Nyquist criterion.

The discrete Fourier transform can be evaluated using the Cooley-

Tukey Fast Fourier Transform (FFT) algorithm if N is a power of 2 [6]. This
well known algorithm greatly reduces the computational burden of
calculating the discrete Fourier transform, with the number of computations
being proportional to N log 2 N rather than the N 2 required for the brute force

evaluation of Equation (3.5.3-4) [6].

3.6 Frequency Averaging

In Section 3.5.1, it was shown that the estimate of the power spectral
density is unbiased. However, it can also be shown that for most processes
that are of interest, the standard deviation of this estimate at a given
frequency is equal to the actual value of the PSD at that frequency [6], [17], [33].

49



MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL BROWNIAN MOTION

This makes Equation (3.5.1-3) a poor estimate of f The standard

deviation of the error is not a function of the time interval of available data

[61, [17], [33]. This means that no matter how large T becomes, the standard

deviation will not improve. The variance of the estimate may be decreased

by either averaging several estimates or averaging adjacent frequencies of a

given estimate. The former method is known as ensemble averaging, while

the latter is called frequency averaging.

Frequency averaging will be employed in this thesis because a

collection of sample paths is not always available for processing. This method

is valid because the errors in the estimates of adjacent points on the PSD are

nearly independent [17]. Frequency averaging has the disadvantage of

decreasing the resolution of the PSD because several points on the graph are
replaced by one. However, because a PSD is commonly plotted using a log-log

scale, this loss of detail may be utilized to eliminate the "bunching up" of
points at the high frequency end of the graph where the human eye typically

cannot resolve individual frequencies. This is done by averaging fewer

points at the lower frequencies and more at the higher end. This process

results in a PSD that is more accurate at the higher frequencies because more

points are involved in averaging, but which still retains good resolution at

lower frequencies.

The averaging system used in this thesis is described by the Table 3.4-1

[22]. The first 32 PSD data points are not averaged. Starting with the 33rd

point, the PSD data is divided into sets of points with indices that range from

2 k- 1 + 1 to 2 k. The points within each range are then averaged to leave only
16 points. This system reduces the number of points in the PSD to

approximately 50 points per decade.
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Table 3.4-1 Logarithmic Frequency Averaging of 32,768 Points
Data Interval Points in Interval Number of Points Number of

per Averaging Points to Plot
1-32 32 1 32
31-64 32 2 16
65-128 64 4 16
129-256 128 8 16
257-512 256 16 16
513-1024 512 32 16
1025-2048 1024 64 16
2049-4096 2048 128 16
4097-8192 4096 256 16
8193-16384 8192 512 16
16385- 32768 16384 1024 16
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Chapter 4

Markov Stochastic Processes

4.1 Martingale and Markov Processes

A martingale is a stochastic process x(t,o) for which [13]

E{x(t 2 ) I x(t1 )} = x(t 1 ) for t2 > tI  (4.1-1)

where Efo I.1 denotes conditional expectation. In other words, for a

martingale the expected value of the future given the present is equal to the

present. The name martingale is the French term for the gambling strategy of

redoubling a bet until a win is obtained. This eventually has to occur in a fair

game, except that the house always has the odds slightly in its favor, and

except for the theorem of gamblers ruin. This states that in a fair game a

gambler with a finite stake betting against a house with an infinite stake will

eventually lose his fortune with probability 1 [12].

A Markov stochastic process x(t,o), as defined by Markov around 1906

[2], is one for which [18]

E{(tn+1 ) I x(tn), x(tn.1), ..., X(tl)} = E{x(tn+ 1 ) I x(tn)} (4.1-2)

In other words, for a Markov process the future depends on the present and

not on the complete past history of the process. This property is similar to the

principle of causality in physics, where differential equations predicting the

future behavior of a system depend only on the initial conditions of the

system independently of how the system reached those initial conditions.
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Presuming the validity of the principle of causality, one would expect

to be able to model the noise processes in physical systems as Markov
processes. However, if a system is modeled with an incomplete set of states,

then the initial conditions of the reduced set of states do not completely

specify the future. Hence an incomplete set of noise states could lead to what
seems to be a non-Markov process.

Chapter 5 defines fractional Brownian motion as an example of a non-

Markov process. In-so-far as the log-log PSD slopes in fractional Brownian

motion are seen in experimental data, one could suppose that the true

underlying physical process could be modeled with Markov noise states, if

enough of them are included. However, it might be inconvenient to include
a sufficient number of states to model a distributed parameter system.

The remainder of this chapter discusses Markov processes, in particular

the Brownian motion process and the processes derived from it.

4.2 Weiner Brownian Motion Process

A Weiner process or Brownian motion process or random walk
process P(t,wo) is a stochastic process such that [18]

(1) P(t) has stationary independent increments, that is if
tI < t2 < t3 < t4, then (t2 ) - 1(t 1) is independent of (t4 ) - 3(t3 ),

and the probability distribution of 3(t2) - P3(t 1) only depends

on t2 - tj and not on tj and t2 individually.

(2) For every t, P(t) is normally distributed with zero mean.

Hence the increment P3(t2) - 1(t 1) is normally distributed with

zero mean, and by (1) the variance of the increment

(t2) - 1(t1) depends only on t2 - t1 .

(3) One can specify that Pr[P(0)=0] = 1, and only consider P(t) for
t > 0. However, one can also consider P(t) for -o < t <0.

54



Chapter 4: Markov Stochastic Processes

A stochastic process with these characteristic properties can be

mathematically constructed [20], so the Weiner process exists. It is a

martingale, because for t2 > t1

E{(t 2 ) I P(tl)) = El [0(t 2)-(t 1)] + [13(t1) - 13(0)1 I [10(t 1) - P(0)]1

= E{ [1(t 1) - 1(0)1 I [P(t 1) - 13(0)1 }

= 0(t1) (4.2-1)

by the stationary independent increment property and assuming 13(0) = 0.

Among the properties of a Weiner process that can be derived from the

defining properties are that any given sample path is almost surely (with

probability 1) continuous and almost surely non-differentiable [18].

The Weiner process models the behavior of the Brownian motion of a

small particle suspended in a fluid and continually buffeted by collisions with

fluid molecules, as first observed for pollen particles in water by the biologist

Brown in 1828. Einstein worked out some of the statistical mechanical

characteristics of Brownian motion in 1905, Weiner put it on a firm

mathematical footing in the 1920s, and Levy further investigated its

properties in the 1930s and 1940s. [19]

There are trillions of molecular collisions per second with a particle

undergoing Brownian motion. In between collisions, the particle motion is

differentiable in classical physics. Because the collision of a molecule with a

particle actually only involves the interaction of force fields, the motion

through a collision can also be regarded as being differentiable. Therefore, a

physical Brownian motion sample path is everywhere differentiable, whereas

the stochastic process which models it very well and has useful properties,

e.g., for defining stochastic integrals, is nowhere differentiable.

Let v(t2 -t 1) be the variance of 13(t 2 ) - 13(t 1 ). By the stationarity and

independence of the increments,

v(2t) = E{ [P(t+2t) - 13(t)] 2 I

= E{ [(13(t+2t) - p(t+t)) + ((t+t) - 1(t))]2 }
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= E( [p(t+2'r) - p(t+t)]2 I + El [p(t+t) - p(t)]2 }

= 2 v(t0 (4.2-2)

Similarly v(nc) = nv(t) and v(c/n) = v(,)/n for any integer n, so that

v(atc) = av(t0 for any rational number a, or any real number a if v(C) is

assumed continuous. Thus v() = v(1-'0 = v(1)t, so that if v(t0 is continuous

v(t) = E{ [(t 2) - p(tl)]2 } = G2 It2 - t1 I (4.2-3)

where aF is called the standard deviation and y2 the variance of the Weiner

process [9], [35].

The autocorrelation function of a Weiner process for t1 < t2 assuming

P(0) = 0 is

001t,t 20 E{P(tl)P(t2)}

= E( P(tl)[P(t 1) + (1(t2) - 13(tj))] I

= E{ [1(t 1) - 13(O)][(1(tl) - 13(0)) + (13(t 2) - 1(tl)] }

= 2 t, (4.2-4)

so that

so a p (tl,t 2) = a 2 min(tl,t 2) (4.2-5)

4.3 White Noise PSD Slope

White noise is a zero mean, Gaussian, stationary, stochastic process

x(t,0o) which has a delta function for its autocorrelation function. The Fourier

transform of a unit delta function is 1 for all frequencies. Thus the two-sided

PSD of white noise has a constant level of ay2 /Hz for all frequencies. This

stochastic process is called white noise in analogy with white light, which has

more or less equal energy at all visible frequencies. The log-log PSD slope of

white noise is 0.
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Having a constant PSD level for all frequencies is a physical

impossibility, because it implies infinite power. However, the concept of

white noise is mathematically useful for modeling physical systems. This is

done in two ways.

First, for sampled observations, measurement noise is often assumed
to be independent from one discrete sample time to the next. This whiteness

assumption causes no physical difficulty because of the discrete sample times.

Second, white noise is introduced as a driving force in state differential

equations through the perfectly rigorous definition of the stochastic integral

with respect to the differential (rather than derivative) of a Weiner process.
The state dynamics then shape the white driving noise to give a colored noise

response. Here, the term colored noise refers to a stochastic process which has

different energy content (or PSD level) at different frequencies, in analogy

with colored light.

4.4 PSD Slope of Random Walk, Trend, and Quantization Noise

A Weiner or random walk process has stationary independent
increments, but itself is not stationary. Hence its PSD is not defined in the

sense of the Fourier transform of a stationary autocorrelation function.

However, a PSD can be computed from the magnitude squared of the Fourier

transform of a finite segment of a random walk sample path.

Either by considering approximations to a Weiner process or by doing

formal manipulations with its correlation function, it can be shown that both

the approximate and formal derivative of a Weiner process is white noise

[181. Thus, the PSD of the Weiner process has a -2 log-log slope. This can be

seen by using integration by parts in the Fourier transform of the derivative

of the Weiner process g(t) with g(--) = g(-) = 0,

00 CIO

f dg(t) e-2nift dt = 2nif f g(t)e -2 ci ft dt (4.4-1)
dt
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1

Thus the Fourier transform of random walk is equal to -- times that of

white noise. Using Equation (3.5.1-3) to arrive at the PSD shows that the PSD1
of random walk is equal to 1 multiplied by the PSD of white noise. This

41c2 f2

has the effect of decreasing the log-log slope of the PSD by two. Because

Equation (4.4-1) holds for any function g(t), integrating any function will

decrease its log-log PSD slope by two, and equivalently differentiating a

function will increase its PSD slope by the same amount.

Now consider the Fourier transform of any finite segment of a trend

at, -T:< t: <T:

T

X(f) = J at e -2nift dt (4.4-2)
-T

Equations (3.5.3-2) and (3.5.3-9) motivate the change of variables

1 2T
f = " , t = nAt = nj- (4.4-3)

where, for the moment, j and n are allowed to vary continuously. This leads

to

N/2

X(j) = a a nAt e -2 ijn/N At dn (4.4-4)
-N/2

Using integration by parts Equation (4.4-4) becomes

X(j) = c At2 [ + e xij) +N2 - e ij)] (4.4-5)X~) t~2 4-7r - ij +e +41( -r)2 -

If, at this point, j is restricted to take on only integer values as it would
in the discrete Fourier transform, this equation reduces to

a At2 N 2 (_1) ix(j) - 2- ( )

20CT 2
lij -10))i (44-6)

1
Therefore, by Equation (3.5.1-3) the value of the PSD at frequencies spaced

Hz apart is given by
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cbxx(f) = 22 (4.4-7)

which will have a -2 log-log slope.

Because both random walk and trend have a -2 log-log PSD slope, they

cannot be distinguished using frequency domain analysis. This is one

motivation for developing the maximum likelihood estimator of Chapter 6

which is capable of separating the trend and random walk.

Quantization noise results from discretization of continuous signals.

The PSD of quantization noise is derived in this section because it is present

in the experimental data presented in Section 6.8.1.

If a continuous signal is being measured by a digital device, the true

value of the signal will be truncated to the number of decimal places stored by

the instrument. Under the assumption that the value of the signal is

changing rapidly with respect to the level of quantization, this is equivalent

to subtracting a uniformly distributed random variable n(t) from the true

value of the signal. The probability distribution of n is given by

p[n(t)] = q if0-nq (4.4-8)
0 else

where q is the resolution of the measurement device. Quantization noise is

assumed to be uncorrelated in time so that

0,,(r) = Etn(t+,c)n(t)}

= E{n(t)2) 8(C)

=3 8(0 (4.4-9)=3

where 8(t) is the delta function.

The PSD of quantization noise is
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00

(Inn(f) = J n e-2 if dt
-00

q2
32 

(4.4-10)

As expected, this PSD is a constant because the quantization noise is assumed

to be uncorrelated in time.

If a measurement y(t) is made up of quantization noise subtracted from

a stationary signal x(t); then its autocorrelation function is given by

(E) = E{ y(t+t)y(t)}

= E{ [x(t+t) - n(t+t)] [x(t) - n(t)]

= E{ x(t+tr)x(t) } + E{ n(t+tr)n(t) }

= x(') + O4M(T) (4.4-11)

if the x(t) and n(t) are independent.

The PSD of y(t) is then given by

00

~yy(f) f [po('r) + unn(t)I e-2nif dr
-00

= qXX(fl + Dili,f) (4.4-12)

As a result of Equation (4.4-12), PSDs which are calculated from experimental

data will show a flattening to zero at the higher frequencies where

quantization noise becomes dominant unless a low-pass filter is used to

remove it.

In the experimental data used in Chapter 6, quantization noise shows

up with a +2 log-log slope. This is because the PSD was produced using the
difference of successive samples that were corrupted by quantization noise.
Recall that Equation (4.4-1) shows that differentiation of the signal of interest
increases the log-log PSD slope by two, and that the differencing operation is

essentially differentiation.
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4.5 Ito Stochastic Integral

If g(t,0) is a random function, and 1(t,co) is a Weiner process such that

g(s,o) is independent of P(t,co) for s < t, then the Ito stochastic integral of g with
respect to dp for given sample paths is defined to be [181

b n-1

f g(t,o) dp(tco) = lim Y g(to) [(tj+,,o) - 3(tj,o)] (4.5-1)
a mesh-"O j=1

where a=t 1 < t2 < ... < tn =b is a partition of the interval [a,b] with

mesh = max (tj+l-tj). In this definition, it is imprecise in what sense the limit

is taken. In Reference [18] it is taken in the sense of limit in the mean (l.i.m.)

for the mean square integral calculus. The completely rigorous definitiofi
utilizes the machinery of Lebesgue integration with limits in probability [301.

Note that the differential notation dp does not involve taking a derivative,

and has a rigorous meaning in the definition of the stochastic integral.

The Stratonovich stochastic integral has the function g evaluated at the

midpoint of each sub-interval in the partition, instead of the left end point

used in the Ito definition. Formal properties of calculus result for, e.g.,

changes of integration variable. However the Ito definition is preferred, even

though formal calculus formulas are lost, because it is defined on a larger

class of functions and good probability properties result, including the fact

that the Ito stochastic integral is a martingale. [21

The Ito and Stratonovich stochastic integrals are the same for a non-

random function g(t) and thus both may be evaluated using the formal rules

of calculus as if P(t) were continuously differentiable [181. Weiner had defined

the stochastic integral in this case [10]. The Ito and Stratonovich integrals give

different results for a random function g(t,o), in particular different expected

values over the ensemble of all sample paths [2].
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4.6 Stochastic Differential Equations

The stochastic differential equation for a vector state x and vector

Weiner process . is written in terms of differentials as

dx = F(_,t) dt + G(.,t) da(t) (4.6-1)

This notation stands for the Ito stochastic integral equation

b b

x(b) - x(a) = f F(_,t) dt + f G(_ ,t) da(t) (4.6-2)
a a

If the functions F and G satisfy Lipschitz and other conditions, and if

the random variable x(a) with ELx(a)2 ] < 0 is independent of D(t) for t > a, then

there is a unique Markov stochastic process solution x(t) of Equation (4.6-2) in

the mean square sense such that x(t) - x(a) is independent of D(t) for t > t [181.

This result depends on the stationary independent increment property

of the scalar process P(t) with Et [3(t2) - p(tl)]2 } = G I t2 - tl I, where Y is the

standard deviation of the increments. The stochastic integral cannot be

defined with fractional Brownian motion PH (see Chapter 5) replacing P, since

its increments are not independent, even though they are stationary, and

E{ [PH(t2) - 1H(tl)]2 } = a It2 - tj 12H.

4.7 Kolmogorov Fokker-Planck Partial Differential Equations and

Derivation of the Kalman Filter

The propagation of the probability density of the initial condition x(a,w)

of Equation (4.6-2) into the probability density of the solution x(t,o) can be
shown to satisfy a parabolic partial differential equation called the

Kolmogorov Fokker-Planck equation [18]. If the state equation (4.6-1) or

(4.6-2) is linear and the initial condition Gaussian, then the rigorous formulas
for the propagation of the resulting Gaussian probabilty density lead to

equations for the propagation of the Gaussian mean and covariance, and then

to Kalman filter formulas for the Bayes estimation of the mean and its

covariance conditioned on observations [181.
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4.8 Exponentially Correlated Noise

Consider the stochastic differential equation

dx = -cl x(t) dt + CiC2 do(t) (4.8-1)

As noted in Section 4.5, because the coefficients of dp(t) are nonrandom, this

equation may be evaluated using the formal rules of calculus. Thus the

equation reduces to

2
dx c 2 Cldt - Cl x(t) + ClC2 w(t) , x(O) - N(O, c2 (4.8-2)

so that [18]

t
x(t) = x(o) e-c t + clc2 J e-cl(t-s w(s) ds (4.8-3)

0

where w(t) is a zero mean, white, Gaussian forcing function. The variance of

the initial condition is chosen for convenience in deriving the

autocorrelation function. Because x(O) and w(t) have mean zero, x(t) also has
mean zero. In this thesis, cl will be referred to as the inverse or reciprocal

time constant and c2 as the scaling parameter.

The autocorrelation function for x(t) assuming tl > t2 is [18]

qxx(tl,t2) = E{ x(tl)x(t2) }

= E x(o) e -ctl + clc2 e -t  w(s) ds x
0

x(O) e -ct2 + clc2 2 e -c (t2- ) w( ) d1

0 0
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t22 e~l~ 2 2

= c2 (cl/2) eci(ti+t) + C1C2 J e-c(tl-) e-c1(t2- ) d
0

2
= c2 (cl/2) e- (tvt) , t1 > t2  (4.8-4)

The fact that the correlation function for x(t) is an exponential has lead to its

being called exponentially correlated noise.

Because exponentially correlated noise is stationary, its PSD may be

calculated directly as the Fourier transform of its autocorrelation function:

00

Dxx(f) = c2 (cl / 2) e-cl Ir I e dt

1 (clc 2)21 -- I2) (4.8-5)
27t f2 + (cl /21) 2

where tr = t1 - t2. This function will have a log-log slope of zero for

frequencies below (cl /27r), near this frequency it will begin to transition to a -2

log-log slope. Because exponentially correlated noise has a PSD which shows

more energy in some frequencies than others, it is often referred to as colored

noise.

4.9 Simulation of Markov Noise Processes

The Markov noise processes that were described in the preceding

sections may all be simulated using a digital computer. Computer generated

sample paths will be useful for evaluating the performance of the algorithms

presented in Chapters 6 and 7. Subroutines that produce independent, zero

mean, unit variance, normally distributed random variables, and others that

return independent, uniformly distributed random variables are commonly

available in software libraries. These subroutines make use of random

number generation algorithms.
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White noise is a sequence of normally distributed random variables,

while random walk and exponentially correlated noise are simple functions

of a white noise sequence. Quantization noise may be simulated using a
random number generator with a uniform distribution or by truncating data

to a given precision.

A zero mean white sequence is formed using the following formula:

y(ti) = a w(ti) (4.9-1)

where cr is the desired standard deviation of the sequencc and w(ti) is a zero

mean, unit variance, Gaussian random variable from a random number

generator.

A random walk sample path may be simulated by

y(ti) = y(ti-1) + b At 1 / 2 w(ti) (4.9-2)

where b is the random walk standard deviation parameter and At is the

desired time step.

Exponentially correlated noise is generated using the discretized form

of Equation (4.8-2):

y(ti) = e -clAt y(ti1) + clc2 At 1 / 2 w(ti) (4.9-3)

This process may also be simulated using a first order approximation to

Equation (4.9-3):

y(ti) = y(tii) - cly(tMi)At + clc2Atl / 2 w(ti) (4.9-4)
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Chapter 5

Fractional Brownian Motion as an Example
of a Non-Markov Stochastic Process

5.1 Motivation for Defining Fractional Brownian Motion

Fractional Brownian motion (fBm) is a generalization of the more

familiar Brownian motion (Weiner) process that was defined in Section 4.2.

The definition of fBm was motivated by the fact that there are many signals

which occur in physical systems that have PSDs with log-log slopes between 0
and -2 over a very wide range of frequencies. Such processes cannot be

modeled by a combination of a reasonable number of Markov processes.

A PSD which is proportional to fO over all frequencies for -2 < 3 < 0 is

indicative of a long term dependence in the data [26]. This means that the

value of the process at the current time is highly dependent upon all past

values of the process. This is why Markov processes cannot model systems of
this type, because the future value of a Markov process is only dependent

upon its current value.

Some example:; of systems which exhibit a power spectral density

proportional to fO are semiconductors [36], loudness and pitch fluctuations in
music and speech [43], seismic reflections [42], sunspot activity [271, and the

classic example of Nile river flooding [27]. While the physical processes of

these systems are different, fBm provides a common mathematical model

which does characterize them in a useful way.
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5.2 Definition of Fractional Brownian Motion

The definition of fBm vas proposed by Mandlebrot and van Ness as a

modification of an earlier deLnition by Barnes and Allen [4]. An fBm process

is defined by the following equations [26]:

PH(O,o)) = bo

')rf {J [(tS)H-1/2 _ (_s)H-1/2] dP(s,o )
POHtO) - PH(0,O) = F(-H+.5)0

t
+ f (t-s) H -1/ 2 d3(sw) (5.2-1)

0

In this definition, P(t,o) is a unit variance Brownian motion or Weiner
process at time t with probability space (a, d[3(t,w) is its differential for the Ito

stochastic integral, and F(o) is the gamma function. The parameter H is the
fBm parameter which will define the slope of the fBm PSD. As Section 5.6.2

will show, the log-log slope of the PSD will be equal to -(1+2H). The

definition is valid for 0 < H < 1. In this thesis, it will be assumed that bo = 0.
The fact that the integral in Equation (5.2-1) is evaluated from minus infinity
to the current time makes fBm a non-Markov process, except in the case

where H = where 1/2 is ordinary Brownian motion:

t

I/1 2 (t,O) = f d3(s,) (5.2-2)
0

Because fBm is based upon Brownian motion, it is a zero mean Gaussian

process.

Equation (5.2-1) is actually the fractional integral [32] of the white noise
process dp(t,cto) which would more commonly be written as [26]
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1 t 2 [t_)H-1/2] dp(sm)

H(t2,0) - PH(tl,O)) = r(H+.5 ) { [4 2 -s

ti

- j (ti-s)H-1/2 d3(sm) (5.2-3)

except that the individual integrals in Equation (5.2-3) are divergent, in

contrast with the combined integrals in Equation (5.2-1).

5.3 Self-similarity of fBm

A useful property of fBm is that its increments are self-similar. Self-

similarity means that

pIPH(t+aAt) - PH(t)] = p[AtHPH(a)] (5.3-1)

where p(o) indicates a probability density [26]. Note that this equation also

implies that the fBm increments are stationary, though they are only
1

independent when H = 1

Without loss of generality, Equation (5.3-1) can be shown to be true for

bo = 0 and t = 0. Using Equation (5.2-1) and dropping the explicit dependence

on the probability space w for simplicity

PH(aAt) = r(H+.5) f [(aAt-s)H-l/2 - (_s)H-1/2] dP(s)

aAt }
+ f (aAt-s)H-1/2 do(s) (5.3-2)

0

The change of variable s' = s leads to

dP3(s') = At1/ 2 dP(s) (5.3-3)

69



MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL BROWNIAN MOTION

r(H+ t 5 1 f [(a-s')H-1/2- (-s)H-1/2] dP(s')

a

0 (a-s')H- 1/ 2 d(s')
0

= AtH[3H(a) (5.3-4)

5.4 Autocorrelation of fBm

In order to find the autocorrelation function of fBm it is first useful to
find the variance of an fBm increment. By self-similarity

p[PH(t+At) - PH(t)] = p[AtH PH(1)] (5.4-1)

Thus in the case where the Brownian motion process P3(t) of Equation (5.2-1)

has unit variance, the variance of an fBm increment is given by

E{ [OH(t+At) - PH(t)]2 } = E{ [AtH[OH(1)] 2 }

= At2H E{3H(1) 2 }

= At2H VH (5.4-2)

where

VH E{IPH(1) 2 }  (5.4-3)

The parameter VH is only a function of H, so it would seem that H is the only
parameter required to characterize fBm. However, it is possible to create a

more "noisy" sample path by multiplying the sample path of Equation (5.2-1)

by a positive constant A. As can be seen by examining Equation (5.4-2) this
would have the effect of scaling the variance of an increment by A 2 . Thus a

new parameter will be introduced to account for possible scaling of the fBm

process:

2 = A 2VH (5.4-4)
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This parameter is introduced because it is common practice ([4], [24], [26]) to

consider VH to describe the unscaled process. In this thesis, the parameters H

and H will be used to completely characterize an fBm process.

Assuming that PH(O) = 0, so that E{1H(0)OH(ti)} = 0, the autocorrelation

function is now given by

Opp(tl,t 2 ) = E{1H(tl)PH(t2)}

= E{ -1H(O)OH(tl) - PH(O)PH(t2) + 3H(tl) 3H(t2) }

= E{ 13H(0) 2 - 2 0H(O)PH(tl) + PH(tl) 2

+ PH(0) 2 - 2PH(O)PH(t2) + PH(t2) 2

- PH(tl)2 + 2PH(tl)PH(t2) - PH(t2) 2 }

1 E{ [1(tl) - PH(0)] 2 + [IH(t2) - PH(O)] 2 - [H(t2) - 1H(tl)] 2 }

2
[ I tl12H H 2 1 2( _- t2 tl12H o2 ]

2 2(yH[ Itl1 2H+ It212H- It2 -t1I12H] (5.4-5)

1When H=

2OPP(tl,t) = a H min(tl,t2)

which is the autocorrelation function of ordinary Brownian motion.

Note also that 40 is a function of the absolute times tl and t2. This

makes fractional Brownian motion a nonstationary process. It is also useful

to note that because fBm is a zero mean process its covariance is equal to its

autocorr-lation.
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5.5 Autocorrelation of the Increments

It will be useful to know the autocorrelation function of the

increments of an fBm process. The increments themselves are often referred

to as discrete fractional Gaussian noise as a generalization of the Gaussian

noise increments which comprise ordinary Brownian motion.

Let the fBm increment X(tk) at time tk = kAt be defined to be

X(tk) = H(tk+l) - PH(tk) (5.5-1)

then the correlation between two increments is given by

Oxx(tk+n,tk) = E{ X(tk+n)X(tk) I

= El [IH(tk+n+l) - OH(tk+n)] [OH(tk+l) - 0H(tk)] }

= E{ IH(tk+n+l)PH(tk+l) - IPH(tk+n+l)OH(tk)

- OH(tk+n)IH(tk+l) + PH(tk+n)PH(tk) I

E{ [Pf(tk+n+l) - AH(tk+l)] 2 } + 1 El [OH(tk+n+l) - PH(tk)] 2 }
2 2

E{ [PH(tk+n) -1H(tk+l)] 2 E- [13 (tk+n) - PH(tk)] 2 )
2 2

=1 InlIAt)2H 2H + 1 (lIn+llIAt) 2H 2r

12 1 2

n-+ I At)H i- ( I n I At)2H _ n H  by Equation (5.4-2)

=1 A 2 2n2+I-1H

At2H [ I n+1 12HH] (5.5-2)

Note that Pxx(tk+n,tk) = Cxx(n) so that the increments are correlation

stationary. Also, because the increments are zero mean, the correlation

function is equal to the covariance of the increments just as in the case of the

fBm process itself.
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5.6 fBm Derivative Process

It is possible to define a derivative process for fBm as follows [26]:

PH, = 8 [(H(t+6) - PH(t)] (5.6-1)

In the limit as 8 approaches zero, this process does not exist because fBm is
not differentiable [26]. However, this process is an approximation to the

derivative of fBm which will allow the calculation of the autocorrelation
function and PSD of fractional Gaussian noise.

5.6.1 Autocorrelation of fBm Derivative Process

The autocorrelation function of Equation (5.6-1) is given by

OPP(t 2 ,tl) = E{ [H(t2+8) - PH(t2)][fH(t +8) - P1H(tl)]

1 2 2H,_ H
= 2 OH 8-2 [(C + ) -22H + J]-I2H (5.6.1-1)

where T = t2 - t1 and t2 > tl. Holding z fixed and taking the limit as 6
approaches zero leaves

2
c€r(H) -=H H(2H-1) I T2H-1 (5.6.1-2)

after applying L'Hopital's Rule twice.

5.6.2 Power Spectral Density of fBm Derivative Process

Because the autocorrelation of real data is an even function, the
Fourier transform of any real-valued autocorrelation function may be given
in terms of Fourier cosine coefficients instead of the complex exponential

coefficients used throughout Chapter 3. Using this method, the PSD of the
derivative process is
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00
1 2 _ )H2

(ID (f) = 2 (yH [8(-f + 8)2H -2tr2H + I' - 2H ] cos(27cft) d'r (5.6.2-1)
-00

which, under the assumption that 6f is small, reduces to [261

(Dpp(f) = 2 a2 82H-1 (c1 (f) (5.6.2-2)

where

(I)* (f) EE KH(21cf)1-2 H (5.6.2-3)

H(2H - 1) [cos n(H-1)] -1  
(5.6.2-4)KH -- (2 -2H)

Thus the fBm derivative process itself may be used to model a system

with log-log PSD slope equal to 1-2H. Also, by Equation (4.4-1), fractional

Brownian motion models systems with log-log PSD slope equal to -(1+2H).

5.7 Summary of fBm Properties

Fractional Brownian motion is a nonstationary Gaussian process that

has stationary, zero mean, Gaussian increments. In contrast with standard

Brownian motion, the increments of fBm are not independent of each other.

This makes fBm a non-Markov process. The increments of fBm are also self-

similar (Equation (5.3-1)). Signals with stationary, self-similar increments are

also known as fractals [25].

Some other properties of fBm that are shown in Reference 1261 are that
it is mean square continuous, almost all of its sample paths are continuous,

and it is almost surely not differentiable. Note that these -re all properties of

Brownian motion, which is the special case of fBm with H =

Reference [26] also shows that fBm is unique in that (1) if a stochastic

process has stationary and self-similar increments with parameter H and is

mean square continuous, then 0 < H < 1, and (2) a Gaussian stochastic process
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with self-similar and stationary increments is fractional Brownian motion

times a constant plus an offset.

5.8 Simulation of fBm

Just as in the case of Markov stochastic processes, it is useful to be able

to simulate fractional Brownian motion using a digital computer. Simulated

sample paths are used to test the estimators developed in the Chapter 7. Two
methods of simulating fBm are presented below. Simulations were run

using both methods, and each produced data with the expected log-log PSD
slopes. For the analysis and plots presented in this thesis, the method

described in Section 5.8.2 was used.

5.8.1 Discrete Approximation to fBm Integral

It is possible to simulate fBm with a brute force discrete approximation

to the fBm integral given by Equation (5.2-1). This simulation is
implemented as an approximation to the Stratonovich stochastic integral,

which is the same as the Ito integral in this case, in the following form:

1 1f t ]H -/2 (. t)H 1/2
PH(tk) F(H+.5) Z [tk - (ti+-2 ) -

1 /  2 [t-H)- ( + 5 - -i -- -/ Pt) (ti-1)]
li=-N

k-1 }+ I [tk - (ti+-2 )]H -1/ 2 [pti) - p(ti_,)](581)

i=O

where At is the desired time step and ti = iAt. In this formula, N must be very

large with respect to k in order to achieve sufficient accuracy. The term

P(ti) - P(ti- 1) is a random walk increment which is simulated as At1 / 2w(t i),
where w(ti) is a zero mean, unit variance, Gaussian random variable

produced by a random number generator. Multiplying Equation (5.8.1-1) by a
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2positive constant A will create an fBm sample path with CFH equal to A2VH,

where VH is defined by Equation (5.4-3).

This method is computationally slow because of the necessity to make

N large. Experience with the method showed that using N equal to 64k was

sufficient to produce good results. However, this requires the generation of

65 times as many Gaussian random variables as there will be points in the

resulting fBm sample path.

5.8.2 Correlated Increments Method

An alternate way to simulate fBm is to take advantage of the known
correlations between the increments H(ti) - PH(ti-I). It is possible to generate

N independent Gaussian increments and then to transform them so that they

have the desired correlations. This is done by creating a matrix which

contains the desired correlations between the various increments, i.e. the ijth

element of the matrix is given by

Cij = 4xx(n) (5.8.2-1)

where COxx(n) is as defined in Equation (5.5-2), and n = li - j i.

The correlation matrix C may then be factored into the product of a

lower triangular symmetric matrix and its transpose using a Cholesky

decomposition [401:

C = LLT (5.8.2-2)

This is possible because the correlation matrix is positive definite [24]. The

positive definiteness of the correlation matrix also guarantees the
invertibility of L [40]. It is now possible to define a vector of random variables

y such that

= L-1x (5.8.2-3)

If x is zero mean, the variance of y is given by
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E{yT} = E{L-1xxTL-T}

= L-1L LT L-T

= 1 (5.8.2-4)

Thus the transformed variables are uncorrelated with unit variance.

The fBm simulation procedure consists of generating the correlation

matrix C based upon the desired fBm H and aH parameters, factoring C into L

and LT, generating a vector y of N independent Gaussian random variables
with unit variance, and performing the transformation

x = LY (5.8.2-5)

to arrive at N fBm increments with the desired correlations. The increments

may then be summed to produce the fBm sample path.

This method, which was taken from Reference [24], has the

disadvantage of requiring the Cholesky decomposition of the N x N matrix C.
This requires an extremely large number of operations as N becomes large.
Even so, this method is still much quicker than the method of Section 5.8.1,

and the Cholesky decomposition routine itself is commonly available in

software libraries.
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Chapter 6

Application of Maximum Likelihood
Estimation to System Identification

6.1 Estimation of System Dynamic and Markov Noise Parameters

Maximum likelihood system identification is a method which
combines a linear optimal filter with a maximum likelihood estimator to

determine unknown dynamic and noise parameters in a given system model.
An extended Kalman filter rather than this technique is commonly used to

determine system parameters.

Maximum likelihood system identification has been presented under
various designations by different authors [151, [29], [31], [37], [39]. It will b_
called Full Information Maximum Likelihood Optimal Filtering (FIMLOF) in

this thesis, a designation commonly used at Draper Laboratory if not in the
rest of the community [16], [41]. "Full Information" refers to the fact that

stochastic as well as dynamic parameters can be estimated, "Maximum
Likelihood" refers to the use of a Fisher estimator to determine the

parameters, and "Optimal Filtering" refers to the presence of a Kalman filter

in the algorithm.

The basic concept behind FIMLOF is to fix the unknown parameters,

propagate the states with a Kalman filter that is based upon those parameters,

build a likelihood function with the information obtained from the filter,
adjust the parameters to maximize the likelihood function with respect to the
unknown parameters, and repeat the process with the new parameter values
until the parameter estimates converge.
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Alternating between the maximum likelihood parameter estimate

iteration and the Kalman filter state propagation is not the same as
alternatingly holding some parameters fixed and solving for others in pure

maximum likelihood or least squares estimation. The latter procedure is

definitely incorrect. The former procedure works very well in practice,
because the state initial conditions are among the estimated parameters and

the Kalman filter serves to account for noise in the dynamics that maximum

likelihood estimation could not handle alone.

6.2 System Model

The system of interest will be assumed to be a linear, time invariant

system driven by white noise with white measurement noise. The Ito

stochastic differential equation model for the state vector x is

dx = A'x dt + B'u(t) dt + L' da(&) (6.2-1)

where u(t) is a deterministic input vector and D(t) is a Weiner process.
Integration of the equation and discretization yields a discrete time, state space

model:

x(tk+j) = Ax(tk) + Bu(tk) + L.(tk) (6.2-2)

with measurements

z(tk+l) = Cx(tk+l) + 0(tk+l) (6.2-3)
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This model employs the following definitions:

x(tk) e 91' state vector at time tk

U(tk) F 91' deterministic input vector at time tk

t(tk) E WlP white plant noise vector at time tk

Z(tk) , 9jr measurement vector at time tk

O(tk) - 9 r : white measurement noise vector at time tk

tk : time index (k = 0, 1, 2,...)

A E jnxn : state transition matrix

B E 9inxn : system deterministic input matrix

C F 9jrxn : system output matrix

L 9nxn : system plant noise input matrix

The initial state, x(t 0 ), is a Gaussian random variable with mean

Ex(t)} = -No and covariance E{[x(to) - _Xo][x.(to) - _:]T) = 1 0 . The plant

and measurement noise processes are zero mean, discrete, white noises with

covariance E{_ (tj)_(tk)} = E8jk and E{(tj)O(tk)} = Ojk respectively. This

method will also assume that all of the measurement variables are corrupted

by the measurement noise and that the input vector U(tk) is known.

6.3 Kalman Filter Equations

The Kalman filter is the most common metliod of estimating the states

of a linear dynamic system. This filter is optimal in the sense that it

minimizes the mean square error of the state estimates. The well known

equations for the filter are summarized below [14].

Y(to) = Yo
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R(t)= 

_(tk+l Itk) = Ai2 (tkI tk) + BU(tk) (6.3-3)

X(tk+1 I tk) = Ay(tkl tk)A T + L,(tk)LT (6.3-4)

K(tk+l) = X(tk+l I tk)CT[C (tk+l I tk)C T + E(tk+l)] "1  (6.3-5)

_x(tk+l I tk+l) = _(tk+l I tk) + K(tk+)I[Z(tk+l) - Cx(tk+l I tk)] (6.3-6)

Y-(tk+l I tk+l) = [I - K(tk+l)C] X(tk+1 I tk) (6.3-7)

In the formulation above, the notation l(tk+l I tk) means the covariance of the

estimates at time tk+- given all measurements through time tk. The same

notation applies to the estimate of the states, _(tk+1 I tk).

The Kalman filter is characterized by a prediction cycle (Equations 6.3-3

and 6.3-4) and an update cycle (Equations 6.3-6 and 6.3-7). The pre-update

residual, or innovation, is defined as

r(tk+l) = Z(tk+) - ZA(tk+l I t) (6.3-8)

where

Z(tk+l I tk) = Cx(tk+1 I tk) (6.3-9)

The mean of this residual is

Er(tk+1)1 = EIz(tk+l) - Z_(tk+l))

= E{Cx(tk+t+ -(tk+t) - C +l I tk)}

= CA(tk+l I tk) - CA(tk+l I tk)

= 0 (6.3-10)

The covariance S(tk+l) of the pre-update residual is

S(Ik 1) = Ej(tk+l) r1(tk+l )T )

= E{[Cx(tk+l) + 0(tk+]) - CX(tkl ! tk)][Cx(tk+l) + (tk+l) - C2(tk+l Itk)]T }
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= CX(tk+1 I tk)C' + O(tk+l) (6.3-11)

In Section 6.4, it will be useful to know the conditional probability

density of the measurement Z(tk) at time tk given all measurements
zk - 1 = [z(tk-l), Z(tk-2), ... , z(t0)] up to tk-1, where z(to) contains the initial

condition information. Using Equations (6.3-10) and (6.3-11) along with the

assumption that all of the noise processes are Gaussian, this density may be

written as

p(z(tk) I zk-1) = (2n)-r/ 2 det[S(tk)]-1/ 2 e- L(tk)T S(tk)-lr(tk)]/2 (6.3-12)

where det(S) is the determinant of the matrix S.

6.4 The Likelihood Function

As stated in Chapter 2, the goal of maximum likelihood estimation is

to maximize the joint probability density of the measurements with respect to

the unknown parameters. In this way, the parameter values are chosen that

maximize the probability that the measurements that did occur would have

occurred.

The notation p(zN;Q) indicates the joint probability density function of

all of the measurements through time tN. The vector g. is composed of the

unknown parameters. The expression p(zN;Q) is actually a family of densities
that are indexed by the different values of the parameters [37]. The probability

density may be expanded using conditional densities

p(zN;_) = p(z(tN) I zN1;_.) ... p(-Z(ti) I z(t0 );g) p(-(to);Q) (6.4-1)

Since p(z(tN) I zN-1;0) as given by Equation (6.3-12) is a function of r(tk) and

S(tk) only, the likelihood function may be computed using quantities

calculated by the Kalman filter.

It will simplify the computations if ln[p(zN;o)] is maximized in place of

the density itself. This eliminates the exponential and converts the products
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into sums. This simplification is made possible by the fact that the natural

logarithm increases monotonically. By Equation (6.4-1),

N
ln[p(zN;_) = ] ln[p(z(tk)lzk-1;_Q)] (6.4-2)

k=O

where p(z(O) I z-1;.)

Using Equation (6.3-12)
r 1 1

ln[p(z(tk) I zk- = - ln(2) - 1 ln{det[S(tk;)]} - t r(t;)TS(tk;_)-lr(tk;_) (6.4-3)

Because the leading term is a constant, it will not affect the parameters that

maximize the function and it can be ignored. Finally, changing the sign of

the remaining terms produces the negative log-likelihood function without

the constant term:

N
(_zN;o - Z.(tk) lzk-1; 1) (6.4-4)

k=O

where

(z(tk) I zkl;q) = ln{det[S(tk;_)]} + Ir(tk;g)TS(tk;0)-Ir(tk;__) (6.4-5)

This negative log-likelihood function may be assembled recursively as

the Kalman filter processes the measurements. The maximum likelihood

estimate A of the parameters g, will be the parameter values which minimize

Equation (6.4-4).

6.5 Minimizing the Negative Log-Likelihood Function

There are several numerical methods available to minimize the

negative log-likelihood function. Newton-Raphson iteration is chosen

because it offers relatively fast convergence and because it is possible to

analytically determine the gradient and an approximation to the Hessian of
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Let cc [cc, ... ,aq]T be the maximum likelihood estimates of the

parameters. For these values the negative log-likelihood function is

minimized

C(z_ = minimum (6.5-1)

This means that the gradient of the function evaluated using these values for

the parameters is zero

a (zN; ) I = 0 (6.5-2)

If _o = [CClo,...,(Xqo]T are the first guesses at the values of the parameters and if

Equation (6.5-2) is expanded in a Taylor series about these guesses, the result is

0 - o(zi ;cc)

accq 9-L
_d N; ) + 2 (zN;!)

V &0 + j _ _ Actj, i = 1, ..., q (6.5-3)a0 i -X=ao j=l a0 ia0 j LX-

where Aocj = A a 0.

As in Section 2.6, this result leads to the following set of linear

equations for the adjustments Aoxj to the first guesses Oxjo towards the

maximum likelihood estimates j

q

I Aij Aaj = Bi, i = 1,..., q (6.5-4)
j=1

where by Equations (6.4-4) and (6.5-3)

NE a (z(k) I zk'l;o_ 1

Bi = - I I , i q (6.5-5)
k=O
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N 32 ((k) I zk-1;g
Aij = I a2 (k aa ) , i,j = 1, ... , q (6.5-6)

k=O 0

In the equations above, B and A are the negative gradient and the Hessian of

the negative log-likelihood function respectively. The maximum likelihood
estimate of the parameters is found by solving Equation (6.5-4) iteratively

until Acx approaches zero.

6.6 Derivatives of the Likelihood Function

In order to use the preceding minimization method the first partial

derivatives of the negative log-likelihood function with respect to the
unknown parameters are calculated analytically. These derivatives are the

gradient and they are used to form an approximation to the Hessian. The
gradient follows directly from Equations (6.4-4) and (6.4-5). It is

a (KN;_) N 4(,Z(tk) I zkl;_)

( ) O , i=1 ... ,q (6.6-1)(Xi k=0

where

3(Z(tk) I zk-1) T -ar(tk,)Woq = r(tk;_ TS(tO"iY-

- I r(tk;oTS(tk;g)-1'S t 30 S(tk-.)-l r(tk;O )

+ I r __.lS(tk;O)1
tr [S(tk2.) 2  (6.6-2)

Appendix B contains the derivation of the last term which is the derivative of

the natural logarithm of the determinant.

If the definition of r and the formula for S, Equation (6.3-11), are
substituted into Equation (6.6-2), the gradient may be calculated analytically

without much difficulty.
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In order to avoid calculating the second partial derivatives of the
negative log-likelihood function, the Fisher information matrix is used as an
approximation to the Hessian. Recall from Section 2.3 that the Fisher
information matrix is equal to the expected value of the Hessian. Assuming
the Hessian is approximately equal to its expected value, Equation (2.3-2) may
be used to express Equation (6.5-6) as

Aij- =N a(Z(tk) I zkl;oq) ai (z(tk) I zk-1;) (6.6-3)

k=O

This Fisher information matrix approximation is valid when the
deterministic input is very large with respect to the stochastic input to the
system or when the observation interval [0, tN] is much greater than the

correlation times of and - [37].

Equation (6.6-3) may be manipulated to arrive at the more useful form
given by Equation (6.6-4). The derivation of this equation in the special case
of a scalar measurement is presented in Section 6.8. The derivation of the

general form is contained in Appendix C.

N [ar(tk;) _r(tk;_QTAii I tr -S(tk;_g-) -

k=O dc - "j

+1 S(tk;O) S(tk;2)_1 aS(tk;-Q) S(tk;2)1 (6.6-4)
2 oi acaj

The Fisher information approximation allows the use of a Newton-
Raphson iteration which does not require the difficult task of calculating the
second partial derivatives of the negative log-likelihood function. This

method is known as Gauss-Newton iteraticn.

There is evidence that the Fisher information approximation is better
than using the exact Hessian. Namely, the second partial derivatives were
coded for the model in Section 6.8. The maximum likeiihood iteration did
not converge with the exact Hessian, but it did converge with the Fisher
information approximation to the Hessian. The computer code for the first
and second partial derivatives of the negative log-likelihood function was
checked by the difference method (Appendix D.4), so this result is probably
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not due to a coding error. Statistical variations apparently make the exact
Hessian less tractable than the expected value of the Hessian, at least when
the first guess for the parameters is not close to the true values. For example,
the Hessian may have some negative eigenvalues, while the Fisher
information approximation is guaranteed to be positive definite. See also
References [15], [411. In this thesis, all minimizations were performed using a
pure Gauss-Newton iteration.

6.7 Implementation

The FIMLOF software algorithm consists of implementing the Kalman
filter described by Equations (6.3-3) through (6.3-7). Using a first guess for the
parameters, this filter calculates the residual and error covariance at each
measurement. These values, along with their partial derivatives are then
incorporated into the negative log-likelihood function, its gradient, and the
approximation to its Hessian. Once all the measurements have been
processed, a single Gauss-Newton iteration is performed to update the
parameter estimates. The process is repeated with a new Kalman filter which
is based upon the improved parameter estimates, and iterations continue
until the parameters converge satisfactorily.

FORTRAN software was written to implement the FIMLOF algorithm.
Much of the code is for systems of general dimensions, but some subroutines
were specialized to scalar rather than vector observables and to the specific
two state model of Section 6.8. The software uses the square roots of the
diagonal elements of the Fisher information matrix (calculated during the
maximum likelihood iteration) as a measure of the uncertainty of the
parameter estimates, by the Cramer-Rao lower bound discussed in Section 2.4.

It can be shown that for a time invariant, linear Gaussian model with
stationary noise processes, the FIMLOF estimate will display the properties
which make classical maximum likelihood estimates attractive [37]. That is,
the FIMLOF estimate is asymptotically consistent, unbiased, normally
distributed, and efficient. As stated in Chapter 2, this means that the Cramer-
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Rao lower bound is attained in the limit of a large number of observations.

Thus the accuracy of the parameter estimates can be readily evaluated.

6.8 Application of FIMLOF to an Approximation to fBm

6.8.1 Example of Experimental Data with a -1 log-log PSD Slope

As a nonMarkov process, fractional Brownian motion is not suitable

for estimation using a Kalman filter, since the derivation of the Kalman filter

assumes Markov plant noise [181. This means that FIMLOF cannot be applied

to estimate fBm parameters. However, it is possible to produce a system

which has a power spectral density with a -1 slope over a finite frequency

range by summing several Markov noise processes [21]. An example of this

procedure using experimental data is now presented.

Figure 6.8-1 shows the output of an accelerometer which is under a

constant -1 g acceleration. The plot was produced by sampling the output at 1
Hz and then averaging every 10 data points. The data covers a time span of

5.7 hours. Figure 6.8-2 is a PSD of the 1 Hz data using 32,768 (215) points.

Below 0.05 Hz, this plot has the -1 log-log slope which is characteristic of fBm.

Above this frequency, the plot transitions through a zero slope to a +2 log-log

slope. A slope of zero is indicative of the presence of white noise and a
+2 slope is an attribute of quantization noise. Figure 6.8-3 is a PSD of the 10

second averaged data. It shows that the averaging removes some of the

quantization noise while adding some energy to the lower frequencies due to

aliasing. The estimator will use this averaged data in order to decrease the

number of measurements while still covering a long time span.
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Figure 6.8-1 Accelerometer Output Averaging 10 sec Intervals
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Figure 6.8-2 PSD of Accelerometer Output Using 32,768 Points
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Figure 6.8-3 PSD of Accelerometer Output Using 2048 Points of

10 sec Averaged Data

6.8.2 Second Order Scalar Observable FIMLOF Model

The fact that this problem involves a scalar measurement simplifies
the calculations and makes it a good example to more clearly demonstrate the
FIMLOF process. The fractional Brownian motion contained in the signal
will be approximated by the combination of a trend, random walk, and
exponentially correlated noise which are all Markov noise processes. The

system model will also include white measurement noise.

Let (xl, x2) be states with xi equal to a trend plus random walk and x2
equal to an exponentially correlated noise. Let the deterministic input
function U(tk) be a unit step, and assume that At = tk - tk-I is the constant time
spacing of the measurements in seconds. Also make the following

definitions:
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a trend parameter

b random walk standard deviation
cj :inverse of the exponentially correlated noise time constant

C2 exponentially correlated noise scaling parameter
v white noise standard deviation

Then following the notation of Section 6.2, this model is written as

X(tk+l) = 1 0 x(tk) + aAt U(tk) + b c (tk) (6.8.2-1)0 e-c la t -  0 1 0 ClC2

Z(tk+l) = [1 1] x(tk+1) + -Q(tk+l) (6.8.2-2)

[1(tk) = At 0] (6.8.2-3)(t) = At0 1

0(tk) = [v2] (6.8.2-4)

The state equation (6.8.2-1) for x2 is the discrete form of Equation (4.8-1).

Based upon the above formulation, the parameters to be estimated are

a, b, cl, C2, and v. Four more parameters are needed because the Kalman filter

requires initial conditions on the state estimates and their covariance.

=[ X0 ] (6.8.2-5)X20

0 = 0 (6.8.2-6)022

The initial covariance matrix is assumed diagonal because the noise states are
independent in the model. The initial conditions are estimated along with a,
b, CI, c2, and v, but sl and s2 are assumed to have known values. The

derivation of the estimator will include the formulas involving sl and S2 for

completeness.

The Kalman filter equations for this system are well defined and follow

directly from those listed in Section 6.3. In order to perform the
minimization of the negative log-likelihood function using the gradient and

approximation to the Hessian which are given by Equations (6.6-2) and (6.6-4)
the partial derivatives of r(tk+1;O), which is a scalar, and S(tk+l;2.) are required.
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Expressions for these partial derivatives are formed using the Kalman filter
equations which are specific to the system.

Recall from Equation (6.3-11) that in the scalar measurement case the
error covariance of the residuals is

S(tk+l) = E{ r(tk+1) 2 }

= X11(tk+1 I t) + X12(tk+1 I t+)

+ X21(tk+1 I tk) + Y22(tk+l I tk) + (6.8.2-7)

where the explicit dependence of r and S on _Q has been dropped for clarity.
Then the Kalman filter gain matrix is

K(tk+l) = y(tk+1 Itk) CT [ C I(tk+1 I t) CT + v2 ]-1

1 [ 11 + 1 2  (6.8.2-8)

- S(tk+l) 1 21 + (.222

The covariance matrix of the updated state is

X(tk+1 I tk+ )  = [I - K(tk+1) C] X(tk+ I tk) (6.8.2-9)

X(tk+l Itk) -

Y(tk+1 I tk) CT [ C X(tk+1 I t k ) CT + v 2 ]-I C l(tk+1 I tk)

and Kalman filter update Equation (6.3-6) is

N(tk+l I tk+l) = (tk+1 I tk) + K(tk+l)r(tk+]) (6.8.2-10)

At the initial time to, the only non-zero partial derivatives are by
Equations (6.8.2-5) and (6.8.2-6)

- 2(to) 2 - 1 (6.8.2-11)

ox10 ax20

all 1 (to) UX22(t0)a, - 2sl, 2  2 S2 (6.8.2-12)

The only non-zero partial derivative of the state transition matrix is
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A [ 0 0 1 (6.8.2-13)

aCl - 0 -Atec-At(

The partial derivatives of the state propagated from time tk to tk+1

with respect to parameters, initial conditions, or initiai state standard

deviations x are by Equation k6.3-3)

Ix( tk ) A ,,. . I tk) aB
- _ - -x(tk I tk) + A + (6.8.2-14)

;i -" a0ci ak i

where the only non-zero partial derivative of B is

aB [At] (6.8.2-15)-a= 0

The partial derivatives of the state covariance propagated from time tk

to tk+l with respect to parameters, initial conditions, or initial state standard

deviations cq are by Equation(6.3-4)

al(tk+l I tk) aA aAT
- -. (tk I tk) AT + A X(tk I tk)

3X(tk I tk) A +

+ A IA T + (6.8.2-16)acci acoq

where

Q L E LT = L LTAt (6.8.2-17)

so that

JQ _ L 3LT
- LTAt + L aLT At (6.8.2-18)

with the only non-zero partial derivatives of L being

KL =1 O L [0 01 [0 01 (6.8.2-19)
ab- 0 0 ' C - 0 c2' ac2 -0 c6.

Also the partial derivative of the measurement noise covariance is
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av2  o if aj v-i (6.8.2-20)
aai  2v ifai =v

At this point, recalling the definitions of the residual and its

covariance, their partial derivatives may be written as

a r(tk+1) = a,(tk+l I tk)(6.8.2-21)
aa i  aC i

a S(tk+1) a11(tk+1 I tk) 2 ay12(tk+l I tk)-- +
aa i  aaoi  a i

ax,22(tk+l I tk) av+ + 2 v - (6.8.2-22)
a(Xi aai

The partial derivatives of the Kalman filter gain matrix are by

Equation (6.8.2-8)

ay11(tk+l I tk) ax12(tk+l I tk)+

aK(tk+1) 1 aot ao4
aaji S(tk+l) a,21(tk+11Itk) +aY22(tk,1 I tk)

+
ao4 ao4

1 aS(tk+ ) T 11(tk+1 I tk) + 712(tk+1 I tk) 1

S(tk+l)2 ati L,21(tk+1 I tk) + 22(tk+l I tk) (6.8-23)

The partial derivatives of the updated state at time tk+1 given the

measurements up to time tk+1 are by Equation (6.8.2-10)

ax(tk+l I tk+l) 8_C(tk+l I tk) ar(tk+1) +aK(tk+l)- a - -cz + K(tk~l) ac, + aKt~)r(tk+1) (6.8-24)ao4 ao4 aatiao

The partial derivatives of the updated state covariance at time tk+1 given the

measurements up to time tk+1 are by Equation (6.8.2-9)
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D1(tk+l I tk+1) _ -(tk+l I tk) CX(tk+l I tk)- ___-K(tk+I) C
3K(tk+i)

- C 7(tk+l I tk) (6.8.2-25)

In this simplified case the components of the gradient of the negative

log-likelihood function (6.6-2) may now be written as

a (Z(tk+l) I zk;a) 1 aS(tk+1) r(tk+1) ar(tk+1)

aa~i - 2S(tk+ ) a i  + S(tk+l) aa i

r(tk+1) 2  S(tk+l) (6.8.2-26)
2 S(tk+l) 2  a i 6

and the Hessian (6.5-6) of the negative log-likelihood function is

N
Ai= Aij(tk) (6.8.2-27)

k=O

with

Aij(tk) = a2C(Zt() I zkl;.q) (6.8.2-28)

Inserting Equations (6.8.2-26) into Equation (6.6-3) yields the Fisher

information approximation to the Hessian

Aij(tk) --- E{Aij(tk)}

E 1 as(tk) aS(tk)
E 4 S(tk)2 aa i  acj

r(tk)  aS(tk) ar(tk)

2 S(tk)2  aoi  aj
aS(t k ) ar(tk ) ]

+ aj aa i
r(tk )2 ar(tk ) ar(tk )

+ S(tk)2  &Li  aj
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4 S(tk)4  aa aczj

2 2S(tk)3  aa a

-2 S(tk)3  aa aczj

+ aS(tk) ar(tk) } (6.8.2-29)
aaj aczi

If the following facis are applied to the above equation

r(tk) zero mean Gaussian distribution with
covariance = S(tk+1)
third moment = 0
fourth moment = 3 S(tk+1)2

ar(tk) non-random function relative to Yk I Yk-l'* *,YO

S(tk) non-random function relative to Yk+1 I Yk,** *'Yl

it reduces to
1 aS(tk) aS(tk)

E{Aij(tk)) =2 S(tk )2 aa aj

1 ar(tk) ar(tk) (6.8.2-30)
+~k a a

so that

Ai 1 1 aS(tk) aS(tk)
k-O 2 S(tk )2  acc1  azj

+-1 ar(tk) ar(tk) (682-1
+S(tk) at ai (6..231

As expected, Equation (6.8.2-31) is the scalar version of Equation (6.6-4).
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6.8.3 Application of FIMLOF to Experimental Data

The FIMLOF estimation software described in Section 6.7 for the second

order scalar observable model of Section 6.8.2 was applied to the 10 point

averaged data of Figure 6.8.1. Two fits were performed using different time

spans of data. One fit covered 30,000 seconds and the other 48,500 seconds.

The results of these fits are contained in Table 6.8-1.

Table 6.8-1 Results of FIMLOF Fit to Accelerometer Data

30,000 sec of Data 48,500 sec of Data

Initial Conditions:
xj (units) 0.00 ± 10.0 0.10 ± 10.0
X2 (units) -0.158 ± 1.0 0.002 + 1.0

Trend: a (units/sec) 2.09 x 10-5 ± 2.8 x 10-5 7.94 x 10-7 ± 2.7 x 10-5

Random Walk Standard
Deviation: b (units) 5.10 x 10-3 ± 1.2 x 10-3 5.89 x 10-3 ± 1.0 X 10-3

Exp. Corr. Noise:
Inv. Time Const.: cl (1/sec) 5.74 x 10-3 ± 1.5 x 10-3 6.59 x 10-3 ± 1.4 x 10-3

Scaling Param.: c2 (units) 2.70 ± 0.86 2.76 ± 0.54
White Noise Standard 0.174 ± 0.003 0.173 ± 0.002
Deviation: v (units) 0.174__t:_0.003 0.173_+_0.002

RMS Pre-update 0.20 0.20
Residual: (units)

These numerical results present some information about the quality of

the fit. It is important to note that the addition of more measurements

decreased the uncertainty of the estimates as measured by the Cramer-Rao

lower bound. This lower bound should improve by a factor of the square root

of the ratio of the first to the second number of measurements. The

extremely low estimate of the trend and the associated high uncertainty

indicates that there is no significant trend over the time span of the data.
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Because the goal was to approximate a PSD with a -1 log-log slope, a

better test of the quality of the fit occurs in the frequency domain. Simulated
sample paths were produced with the techniques described in Section 4.8.

These simulations of the system model (6.8.2-1) used the parameters given by
the 48,500 second fit. Figure 6.8-4 is an example of one such path and

Figure 6.8-5 shows a PSD generated from the data using 2,048 points. The PSD
is nearly identical to Figure 6.8-3 which shows the frequency content of the

averaged data. This is reasonable because of the measurement averaging that

was used to reduce the number of data points.
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Figure 6.8-4 Simulated Sample Path
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Figure 6.8-5 PSD of Simulated Sample Path

This example shows that FIMLOF may be used to identify a Markov
model which will approximate the power spectrum of a fractional Brownian
motion process over a given frequency range. However, a PSD produced
using a longer time span of data would show flattening in the lower
frequencies. Increasing the valid range beyond the 3 decades presented in this
example requires that more states be added to the model. Reference [21]
provides an analysis of the number of poles required to approximate a
-1 slope over a given number of decades.

6.9 Results of Fits to Computer Generated Sample Paths

In order to further demonstrate the accuracy of FIMLOF, a sample path
consisting of the sum of a linear trend, random walk, exponentially correlated
noise, and white noise was generated using the method described in
Section 4.8. This sample path spanned 327.6 seconds with a time step of 0.01
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seconds. The estimator used every tenth point of the sample path as a
measurement. The FIMLOF estimator for this problem is the same as that
derived in Section 6.8. Table 6.9-1 gives the results of the test case.

Table 6.9-1 Results of FIMLOF Fit to Computer Generated Sample Path

Simulation Value Estimate

Initial Conditions:
x1 (units) 0.00 -1.70 ± 1.3
x2 (units) 0.00 1.75 ± 1.7

Trend: a (units/sec) 1.00 0.98 ± 0.05

Random Walk Standard 1.00
Deviation: b (units) 0.96 ± 1.0
Exp. Corr. Noise:

Inv. Time Const.: Cl (1/sec) 0.64 1.76 ± 0.38
Scaling Param.: c2 (units) 1.56 -0.92 ± 0.22

White Noise Standard
Deviation: v (units) 0.163 ± 0.031

Better results would be obtained for the parameter c2 by using more
data or, if that were not possible, the parameter should be constrained to be
non-negative and new results computed for the other parameters. The
results show that the estimator does a good job of estimating the trend,
random walk, and white noise parameters because there is a great deal of
information about these parameters present in the measurements.

The case was simplified by eliminating the exponentially correlated
noise state from the simulated sample path. The estimator produced the
results contained in Table 6.9-2. Note that the estimates have all improved in
quality, with both their uncertainties and the amounts that they differ from

the simulation values having decreased.
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Table 6.9-2 Results of FIMLOF Fit to Simplified Sample Path

Simulation Value Estimate
Initial Condition:

xi (units) 0.00 -0.12 ± 0.34

Trend: a (units/sec) 1.00 0.98 ± 0.05

Random Walk Standard 1.00 0.98 0.02
Deviation: b (units) 1.00_0.98_+_0.02

White Noise Standard 0.10
Deviation: v (units) 00.14 0.008
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Application of Maximum Likelihood
Estimation to Fractional Brownian Motion

7.1 Modeling a Non-Markov Process

Because fractional Brownian motion is not a Markov process, it

cannot be fully characterized without knowledge of its state for all past time.

For this reason, fractional Brownian motion cannot be incorporated into a

Kalman filter. These filters propagate from one discrete time to the next

storing only the state at the previous time.

The parameters of a non-Markov process may be estimated by using a

filter which stores information from every past measurement. One method

of doing this, proposed by Lundahl, et. al. [24], takes advantage of the known

correlations between the increments of fBm. An estimator of this type may be

formulated to use either the measurements or the increments between the

measurements as observations. These formulations will be identified as the

sum observable and the increment observable respectively.

7.2 Increment Observable Formulation

If H(tk) is an fBm process with PH( 0 ) = 0, then E{H(tk+1)-PH(tk)} = 0

because the fractional Brownian motion process is Gaussian with zero mean.
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Equation (5.5-2) shows that if the samples are uniformly spaced (tk = kAt) the

autocorrelation function for the increments of the process is [24]

= E I [IH(tk+n+l)-PH(tk+n)] [PH(tk+l)-Pi-l(tk)] }

- I E [PH(tk+n+l)- PH(tk)]2 }

+ E { [JPH(tk+n) - PH(tk+l)] 2 }

- E { [(H(tk+n+l) - f3H(tk+ )]2 I

- E { [PH(tk+n) - PH(tk)] 2 } }

= 2 At2H { I n+1 12IH-2 In 12H + I n-1 12H )/2 (7.2-1)

where the parameters GH and H are the fractional Brownian motion standard
deviation and dimension parameters which were defined in Chapter 5.

Because the increments are zero mean random variables, the
correlation between two increments is also equal to their covariance. This

allows the increments to be considered to be jointly Gaussian random
variables with zero mean and covariance S where the ijth element of S is

determined according to

Sij =  x(li - j I) (7.2-2)

The probability density function of the increments then becomes

p(zl,...,ZN) = (21)-N/ 2det(S)-l/ 2 e - (zT S-1)/2 (7.2-3)

where

z = "(7.2-4)

JPH(tN) - OH(tN-l)

Given a set of measurements, maximum likelihood estimation may be
used to determine the parameters H and CH which maximize the likelihood
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that those measurements occurred. The parameters enter the problem

through the (N x N) covariance matrix S.

The simple case above may be extended to include more complex

systems that are modeled as the sum of several stochastic and/or

deterministic processes. Consider a scalar stochastic process y(tk) which at

each discrete time tk is equal to the sum of a bias b(tk), several zero mean

random variables xi(tk) with stationary Gaussian increments, and a stationary

white measurement noise 0(tk) with E{0 2) = 0:

y(tk) = b(tk) + xl(tk) + x2(tk) + ... + xN(tk) + O(tk) (7.2-5)

The increment from y(tk) to y(tk+l) is equal to

Ay(tk+l) = y(tk+j) - y(tk)

N
= b(tk+l) - b(tk) + I [xi(tk+1) - xi(tk)] + 0(tk+j) - 0(tk) (7.2-6)

i=1

Because the stochastic processes are zero mean, the increment can be

converted to a zero mean random variable by subtracting the bias term. This

gives

N
Ay'(tk+) = Ax i (tk+) + 0(tk+l) - 0(tk) (7.2-7)

i= 1

where

Axi(tk+l) = xi(tk+l) - xi(tk) (7.2-8)

The correlation between two increments can now be calculated

Oyy(j) = E{Ay'(tk+j+l) Ay'(tk+)}

= E{[i Axi(tk+j+l) + 0(tk+j+l) - 0(tk+j)]

I Axm(tk+l) + (tk+l) - O(tk)] } (7.2-9)
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If each noise is assumed to be independent of the others, this expression
reduces to

Oyy(j) = E { Axi(tk+j+l)Axi(tk+l) + E{[0(tk+j+)- O(tk+j)][O(tk+)- O(tk)])

- E Axi(tk+j+1)Axi(tk+l) + 28(j) - 8(Ij -1)0 (7.2-10)

where 8(t) = 1 at t = 0 and is zero elsewhere.

Equation (7.2-12) shows that the autocorrelation function of the
increments is equal to the sum of the autocorrelation functions of the
increments of the individual stochastic processes. This makes it easy to build
Oyy(j) for a complicated process by summing the correlations of simpler
processes. Fractional Brownian motion can be included by simply adding in
its autocorrelation which is given by Equation (7.2-1). Also, because Ay'(tk) is
a zero mean process, Oyy(j) is the covariance of its increments. This means
that the increments are again characterized by a multivariate Gaussian
probability density function.

Let the observable column vector be

y(tj)- y(to)

= y ='i) (7.2-11)z -y(tN) -'y(tN-1)A(72-1

with mean

[b(tj)1

(7.2-12)

Lb(tN)j

Then the probability density of the observables is

p(zl,...,zN;) = (2 )-N/ 2det[S(.)]-1 / 2  e - [ -it(-))T S(g l (-())]/2 (7.2-13)
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where -Q is the (m x 1) vector of parameters which characterize the stochastic

and deterministic processes which make up the signal of interest and S(._) is

defined by Equation (7.2-2) using the appropriate autocorrelation function. If

there is a trend a in the data, b(ti) = aAt. A maximum likelihood estimator

can be used to determine the parameters a which best match the N data

points.

A disadvantage of the increment observable formulation is that it

cannot estimate the initial condition associated with a trend. This

shortcoming motivates the development of the sum observable formulation.

7.3 Sum Observable Formulation

Recall from Equation (5.4-5) that the nonstationary autocorrelation

function for a fractional Brownian motion process is

4ip(tjtk) = E { IH(tj) PH(tk) }

2 { ItjI2H+ Itkl 2H - Itj-tk12H}/2 (7.3-1)

This autocorrelation function is also the covariance of the zero mean random
variables PH(tj) and PH(tk). Thus the value of the process at times t1, ... , tN is

a set of jointly Gaussian random variables with zero mean and covariance S

where

SJk = 001(tj,tk) (7.3-2)

The sum observable formulation may also be extended to handle

processes which are the sum of several deterministic and/or stochastic

processes. Consider a scalar stochastic process y(tk) which at each discrete time

tk is eqLial to the sum of a bias b(tk) several zero mean random variables with

Gaussian increments xi(tk) and a stationary white measurement noise 0(tk):

y(tk) = b(tk) + xl(tk) + X2(tk) + ... + xN(tk) + 0(tk) (7.3-3)
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If the stochastic processes are zero mean, this observable can be made into a
zero mean random variable by subtracting off the bias term leaving

N
ytk= Y Xi(tk) + 0(tk)) (7.3-4)

i=1

The correlation between two measurements can now be calculated

Ovyy(tj,tk) = E{y'(tj) y'(tk)}

= E {[ (tj) + O(t) [ Xm(tk) + (tk) (735)
I I mr7-l I.

If each noise is assumed to be independent of the others and E{0 2} = 0, this
expression can be reduced to

N

Oyy(tj,tk) = E j xi(tj)xi(tk) + 0 (7.3-6)

Equation (7.3-6) shows that the autocorrelation function of the
measurements is equal to the sum of the autocorrelation functions of the
individual stochastic processes. This makes it easy to build Oyy(tj,tk) for a
complicated process by summing the correlations of simpler processes.
Fractional Brownian motion can be included by simply adding in its
autocorrelation which is given by Equation (7.3-1). Also, because y'(tk) is a
zero mean process, byy(tj,tk) is the covariance of the measurements. This

means that, just as in the increment observable case, the measurements are
characterized by a multivariate Gaussian probability density (7.2-13) with S()
being defined by Equation (7.3-2). If there is a trend in the data,
b(ti) = al + a2Ati.

A disadvantage to using the sum observable joint probability density

for maximum likelihood estimation is that the terms on the diagonal of the
covariance matrix increase steadily from the upper left to the lower right
corner. This tends to make the matrix poorly conditioned as the number of
measurements becomes large.
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7.4 The Maximum Likelihood Estimator

The fact that both the increment and sum observable formulations

reduce to a Gaussian probability density function is very convenient. The

maximum likelihood estimator for this function has already been presented

in Chapter 6. In fact, the fractional Brownian motion estimator is less

difficult to develop analytically because it is a batch estimator and there is no

need to assemble the likelihood function recursively using a Kalman filter.

Recall that the classical maximum likelihood estimator maximizes the

probability density function of the measurements with respect to the

unknown parameters. In each of the two formulations developed in the

preceding sections, this probability density function is of the form

p(zl,...,zN;j) = (2x)-N/ 2det[S(,]-l/ 2 e - [(-))T S(-q)-1-(-())]/2 (7.4-1)

where the zi are the scalar measurements and .i their means (subtracted out

in computing the covariance S(W)). Following the procedure of Section 6.4,

the negative of the logarithm of this function will be minimized in order to

simplify the calculations. The negative log-likelihood function without the

constant term is thus
1~; 1(742

a(z) = ln( det[S()] I + - [z- (.]Ts( - L[Z - _ ]  (7.4-2)

The gradient and an approximation to the Hessian of this function are

required so that Newton-Raphson iteration may again be used to perform the

minimization. These partial derivatives are identical to those presented in

Section 6.6. The gradient vector is

(0Zi; = - (- -a(2)TS(Q)-1 li - i 2TS(9)-

1 r [S(W_,)-' QJ ,i ,.. m (7.4-3)

and the Fisher information approximation to the Hessian is

109



MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL BROWNIAN MOTION

2 C (-M [ a (W / a , ( g T 1aS) _) S._( _ l _ ]
zi~aj t i + 2 aoi S(j)-I S('1 (7.4-4)

i = ,...,m; j =1,...,m

The maximum likelihood estimator is implemented by fixing the
unknown parameters, calculating the likelihood function and its partial
derivatives, performing a Newton-Raphson update to the parameters, as
described in Section 6.5, and repeating the process until the parameters
converge. A drawback to this method is the computational burden that
comes with inverting the covariance matrix S, which has as many rows and
columns as there are measurements.

7.5 Estimation Results with Pure Fractional Brownian Motion

7.5.1 Increment Observable Model

Given scalar measurements y(ti) which are taken at fixed intervals of
At from an fBm signal, increment and sum observable estimators may be
developed to estimate the parameters CFH and H. For the increment
observable formulation the ijth element of the covariance matrix is given by

Sij = o2At2H{ In+l12H-2 1n1 2H+ In-112H}/2, n= li-j1 (7.5.1-1)

The partial derivatives of these elements with respect to the parameters are

= (YH At 2 H{ I n+1 i2H -2 1n I 2H + In-1 12H} (7.5.1-2)

2 =a2At2H{Inln+ll ln+1 2H-21nln lnl 2H+Inln-ll In-12H}

H (InAt)At2H{ In+l12H_2 InI2H+ In-11 2H) (7.5.1-3)

where the negative logarithm of a zero argument is ignored because it is
multiplied by zero. The measurement vector is
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y(ti) -y(to)1
= Ly~tN)-'y(tN-1)J (7.5.1-4)

The mean is Ij = 0 so that its partial derivatives are

= 0 (7.5.1-5)aCFH

-a = 0 (7.5.1-6)aH

7.5.2 Sum Observable Formulation

For the sum observable formulation, the covariance matrix is defined

by
2

Sij = 2GH { I t 12H + I tj 12H - I ti - tj 12H }/2 (7.5.2-1)

with partial derivatives

acTi - GH( Itji2H+ Itj12H - Iti-tjj2H} (7.5.2-2)aG H

aij= 2
aSi H {nltii iti I2H+iltl tjI 2H-InIti-tjl Iti-tjl2H} (7.5.2-3)

The measurement vector is

Fy(ti)1
z = J(7.5.2-4)

and partial derivatives of the mean 11 are zero
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- 0 (7.5.2-5)
aCFH

a = 0 (7.5.2-6)aH

7.5.3 Fits to Computer Generated Sample Paths

The above estimators were implemented to determine the parameters

of a sample path which was generated using the technique described in

Section 5.8.2. The sample paths were made up of 128 points spaced one

second apart. The parameter values used in the simulation are given in

Table 7.5-1 along with the results of the fits. In this table, the "±" value is the

Cramer-Rao lower bound described in Section 2.4. These results show that

the estimators produce identical results, and that they are capable of

determining the fBm parameters with accuracy on the order of the Cramer-

Rao lower bound. This accuracy may be improved by increasing the number

of measurements. Because the increment observable method is better suited

for implementation, the remaining examples of this chapter will use that

formulation.

Table 7.5-1 Parameter Estimates from Fits To Pure fBm
Simulation I

Value INCREMENT SUM

Standard Deviation: UH 1.0 0.988 ± 0.07 0.988 ± 0.07

Dimension: H 0.1 0.109 ± 0.03 0.109 ± 0.03
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7.6 Results with Fractional Brownian Motion Plus a Linear Trend

If a linear trend aAt is summed with the fBm signal described in

Section 7.5.1, the estimator changes very little. The increment observable

formulation of the ijth element of the covariance matrix is still given by

2= OAt2H{ In+1I 2H-2 Inl 2H+ In-l12H}/2, n= li-jl (7.6-1)

The partial derivatives of these elements with respect to the parameters are

aSi1= 0 (7.6-2)

-T H= H At 2H { I n+1 12H 2 I n 12H + I n-1 12H} (7.6-3)aOH

a~H = 2HAt 2 H In n+ In+1 12H-2lIn InI In12H +In In1 I11 2 H}

2
+O H (In At) At 2H{ I n+1 12H - 2 I n12H + In-1 12H} (7.6-4)

where the parameter a defines the slope of the trend. The measurement

vector becomes
Sy(tj)- y(t)

= LY(tN) - y(tNq-)1  (7.6-5)

The mean and its partial derivatives are

aAt

l ](76-6)
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Fa - (7.6-7)

Ata

= 0 (7.6-8)
aaH

aa = 0 (7.6-9)
aH

A similar estimator may be developed using the sum observable formulation.

Table 7.6-1 contains results of fits to a sample path which consists of

fBm with an additive linear trend. In the simulation, the fBm noise

parameters were COH = 0.7 and H = 0.4. A single fBm sample path was

generated and then the two cases were created by adding different trends to
that sample path. These results show that the magnitude of the trend did

not affect the estimate of the fBm parameters. It is also important to note that

the initial condition of the trend cannot be estimated using the increment

observable formulation.

Table 7.6-1 Parameter Estimates from Fit to fBm Plus Trend (CoH=. 7 , H=.4)

Case: a GH H

1. a = 1.5 1.486 ± 0.02 0.914 ± 0.04 0.301 ± 0.03

2. a = 5.0 4.986 ± 0.02 0.914 ± 0.04 0.301 ± 0.03

7.7 Results with fBm Plus White Measurement Noise

Addition of white Gaussian measurement noise with zero mean and

standard deviation cym to a fractional Brownian motion signal forces a

modification to the covariance matrix. In the increment observable case, the
ijth element of this covariance matrix is given by
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Sij =  2 At2H { In+11 2H-2 In1 2H+ In-1 i2H}/2

+ 2am2(n) - 2m8(In1-1) , n= li-jI (7.7-1)

where 8(n) = 1 if n = 0 and 0 elsewhere. The partial derivatives of these

elements with respect to the parameters are

OH = UHAt2 H( In+1I2H_2 InI 2H+ In-11 2 H} (7.7-2)
aHH

2
+a H (In At) At2H{ I n+1 12H - 2 In 12H + I n-11 2H} (7.7-3)

4am if n= 0

- -2O if n = +1 (7.7-4)

0 else

Parameters were fit to three separate sample paths using the estimator

above. These cases had fBm parameters aH = 0.7 and H = 0.4 and varying
levels of measurement noise. The resulting parameter estimates are shown

in Table 7.7-1. For am of 0.025 and 0.25, the parameter estimates converged,

but when am was set to 1.0, the measurement noise parameter diverged.

There are two possible reasons for the failure of the algorithm. It is

possible that with only 128 measurements, the likelihood function was not

sharply peaked. This can be seen by examining the singular value
decomposition of the symmetric Fisher information matrix which may be

written as

Iij -  i j y T  (7.7-5)
i=1
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where q is the number of parameters, ai is the ith singular value, and y i is the

direction associated with the ith singular value. The parameter updates are
then given by

q1 T
A = i - v - i B (7.7-6)

i=1

where B is the negative gradient vector. Because the Fisher information
matrix will have small singular values corresponding to directions in which
there is little information, the corrections Aoq will be large in these directions
[15]. This would send the corrections far past the optimal parameter estimates
during the update. If the corrections are large enough, the parameter
estimates are no longer close to the optimal values and the code may
converge to an extraneous local minimum.

It is also possible that for 128 measurements, the Fisher information
matrix was not a valid approximation to the Hessian. Either problem may be
solved by the incorporation of more measurements thus increasing the
amount of information used by the estimator and improving the Fisher
information approximation to the Hessian. Another fit was performed using
200 points, and the algorithm converged to the estimates listed in Table 7.7-1.

For comparison, another fit to the case with am = 0.25 was also
performed. This fit demonstrates the fact that the Cramer-Rao lower bound
will decrease when additional measurements are included. This does not
assure a better solution, however, as seen from the results in the table.
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Table 7.7-1 Parameter Estimates from Fit to fBm
Plus Measurement Noise (OH = .7, H = .4)

Case: (Gm GH H

1. am = 0.025 (128 pts) 0.271 ± 0.09 0.522 ± 0.09 0.599 ± 0.11

2. 0 m = 0.25 (128 pts) 0.353 ± 0.16 0.651 ± 0.17 0.461 ± 0.13

3. am = 0.25 (200 pts) 0.402 ± 0.08 0.571 ± 0.10 0.556 ± 0.10

4. aym = 1.00 (128 pts) .. --

5. rn = 1.00 (200 pts) 0.838 ± 0.19 0.899 ± 0.32 0.350 ± 0.13

7.8 Results with fBm Plus Exponentially Correlated Noise

Let xl(tk) be a discrete fBm process with parameters GH and H, and let

X2(tk) be a discrete exponentially correlated noise process with reciprocal time

constant cl and scaling parameter c2. The autocorrelation function for x2(tk) is

then given by
Etx2(tk)x2(tk+n)} = CiC2 e-cl In I at (7.8-1)

Let y(tk) be equal to the sum of the two independent processes and let Ay(tk)

be its increments. By Equation (7.2-11), the autocorrelation function of the

increments is given by

~xx(n) = E{Axl(tk)Axl(tk+n)} + E(Ax2(tk)AX2(tk+n)} (7.8-2)

While the first term of Equation (7.8-2) is the known autocorrelation of fBm
increments, the second term may be manipulated to get a more convenient

form.

Oxx(n) = E{Axl(tk)AXl(tk+n)} + E{[x2(tk) - X2(tk-1)][x2(tk+n) - X2(tk+n-1)]}
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E(Axl(tk)Axl(tk+n)} + Etx2(tk)x2(tk+n)] - E{x2(tk)x2(tk+n-1)}

- Elx2(tk-1)x2(tk+n)} + [X2(tk-1)x2(tk+n-1)} (7.8-3)

Using Equations (7.2-1) and (7.8-1) this reduces to

xx(n) = oH At2H { I n+1 12H -2 In I2H + In-1 i2H }/2

I 2
Scic 2 [ 2e-cl I n I At - e-ClI n-1 At - e-C I n+1l I At] (7.8-4)

Because both processes are unbiased, the autocorrelation function for

the increments is equal to their covariance so that

Sjj = Oxx(n) , n = li-ji (7.8-5)

The partial derivatives of S with respect to the parameters are given by

aOH = OHAt 2H { In+11 2H-2 I nI 2H + In-11 2H} (7.8-6)
=S~ 2 A2

aSi (HAt2H{nln+ll In+1 2H-21nlnl Inj2H+lnln-l1 In-11 2H}
aH

12 +a(l(nAt)At2HI In+1I 2 H-2 In!2H+ In-1I 2 HI (7.8-7)

D = c2 [ 2e-cl1 nIAt - 1e-c I IAt e-CiI n+ IAt ]

1At cic 2 [ 21nI e-c In I At - I n-1 I e-C1 In-1 IAt - I n+1 I e-Cl I n+1 IAt ] (7.8-8)

SClC2 [ 2e-cl Ifn I At - e-ClI n-1 in+l at ] (7.8-9)ac2

The measurement vector and the partial derivatives of the mean

vector are are
y(ti) - y(to)]

[ = (7.8-10)
y(tN) - y(tN-)
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ail 0 (7.8-11)
~afj

= 0 (7.8-12)aH

a = 0 (7.8-13)
aCl

= 0 (7.8-14)
aC2

A fit to a computer generated sample path with parameters CH = 0.7,

H 0.4, cl = 0.5, and c2 = 0.9, failed. The fit used 128 measurements spaced at

one second intervals. This example demonstrates the fact that the addition of

a fourth parameter greatly increases the computational burden while also

requiring many more measurements to get a reasonable estimate. For

comparison, using 128 measurements, one iteration of the case involving

fBm plus white measurement noise required 44.3 seconds of CPU time, while

a single iteration of the case of fBm plus exponentially correlated noise took

72.0 seconds to complete. Of course, the CPU time required to accomplish an

iteration depends on the complexity of the parameter partial derivatives as

well as on their number.

Increasing the number of measurements by even a small amount also

greatly increases the time required to perform an iteration because the

operations required to invert the covariance matrix increases in proportion to

the number of measurements cubed. For example, in the exponentially

correlated noise case, changing the number of measurements from 128 to 200

resulted in a corresponding increase of CPU time from 72.0 to 236.7 seconds.

7.9 Results of Fit to Accelerometer Data

The maximum likelihood estimator was used to perform a fit of the

fractional Brownian motion model to the accelerometer data described in

Section 6.8. In order to decrease the number of data points, while still
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capturing the low frequency behavior of the system, the 1 Hz data was
averaged over intervals of 150 seconds. The fit was then performed using 128
of these averaged measurements. The averaging process had the effect of
limiting the frequency domain information contained in the signal to the
range between 5.2 x 10-5 Hz and 3.33 x 10- 3 Hz. The PSD of the averaged data

was nearly identical to that shown in Figure 6.8-2 over the frequency range of
interest. The results of this successful fit are contained in Table 7.9-1. A value

of H = 0.212 is indicative of a process with log-log PSD slope equal to -1.424,

while the PSD slope of Figure 6.8-2 actually displays a -1 log-log PSD slope.

Table 7.9-1 Parameter Estimates from Fit to Accelerometer Data
Cramer-Rao

Parameter: Estimate Lower Bound

O'H 2.725 0.72

H 0.212 0.04
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Appendix A

Review of Frequency Domain Properties

of Convolution and Correlation

Chapter 3 employs a frequency domain property of autocorrelation to
determine an estimate of the power spectral density of a stationary, ergodic,
stochastic process. Correlation is very similar to the more well known

operation of convolution. This appendix reviews the frequency domain
properties of these operations.

The convolution (x*y)(t) = x(t)*y(t) of two time domain functions x(t)

and y(t) with Fourier transforms X(f) and Y(f) is defined to be [34]

00

x(t)*y(t) J x(t) y(t-t) dc (A-I)
-00

00

f x(t-c') y(tc') dc' = y(t)*x(t)
-00

where the second line is otained by a change of integration variable, so that

convolution is a commutative operation.

The Fourier transform of Equation (A-1) is

00 00 [00
x(t)*y(t) e 2 ift dt = f Jx(r) y(t-0 dc e -2 cift dt (A-2)

-O -00 -- 00
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where the frequency f is given in Hz.

Making the change of variables t = c + z leads to

00 00 00

f x(t)*y(t) e-2nift dt = f Jx(r) y(z) e-2 if( +z) dt dz
-00 -0O -00

00 00

J x() e -2,d" dc f y(z) e-27cifz dz
-0O -00

= X(f) Y(f) (A-3)

Thus the Fourier transform of a convolution is equal to the product of
the individual Fourier transforms of the functions of interest. Equation (A-3)
is known as the convolution theorem [34].

In the case of correlation, the results are slightly different from that of
convolution. The correlation of two time domain functions x(t) and y(t) is
defined to be [8]

00

cOxy(T) J f x(t+tc) y(t) dt
-00

-oo

00

= f x(t+2 ) y(t-2 ) dt (A-4)
-00

where the second line is obtained by a change of variable.

Taking the Fourier transform of both sides of Equation (A-4) gives

00 0

J oxy(t) e 2 nift dc = ffx(t+c) y(t) dt e "27ifT dt (A-5)

Making the change of variables T = -t + z leads to
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00 00 00

f (xy() e-2 rift dt = J X(Z) y(t) e -2 if(-t+z) dt dz
-00 -00 -00

00 00

f x(z) e -2irifz dz f y(t) e 2nrift dt
-00 -0O

= X(f) Y*(f) (A-6)

where the superscript * denotes complex conjugate.

Equation (A-6) shows that the frequency domain properties of a
correlation are slightly different from those of a convolution. The Fourier
transform of a correlation is equal to the product of the Fourier transform of
the first term with the complex conjugate of the Fou:ier transform of the
second.
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Appendix B

Derivative of the Natural Logarithm

of a Determinant

For an nxn matrix S the determinant is [1]

det(S) = eil...in Slil ...Si (B-)
ii... in

I il ..-in Si11""Sinnii ... in

where Sij denotes the ijth element of S and

(0 if any ij = ik (j~k)

il... in = +1 if ii...in is an even permutation of 1...n (B-2)

-1 if ii...in is an odd permutation of 1...n

For any two square matrices A and B we have [1]

det(AB) = det(A) det(B) (B-3)

The inverse of S is [1]

1
S-1 det(S) (matrix of cofactors of S)T (B-4)

where superscript T denotes transpose and the entries in the matrix of

cofactors of S are

(cofactor S)ab = (-l)a+b det (S with row a and column b deleted) (B-5)
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Note that if S is symmetric, then

S = ST, S-1 = (S-1)T (B-6)

Differentiating Equation (B-i) with respect to a = some a i , we obtain [1]

a det(S) n
D a det( S with row i replaced by its derivative)3a i=1I

n n

I I (cofactor Sij (B-7)

i=Ij=1

If S is symmetric this implies

a det(S) = det(S) trace [S-1 a (B-8)

where the trace of a square matrix is the sum of the diagonal terms. Therefore

(see Equation (6.6-2))

a ln[det(S)I trace [S-1 as (B-9)
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Derivation of Equation (6.6-4)

This appendix fills in some of the details which were left out of the
same derivation in Reference [371. To derive Equation (6.6-4) it is necessary to
know the third and fourth moments of a multivariate Gaussian distribution.
These moments are derived first. Let c be a nonrandom vector, let A and B be
symmetric, nonrandom matrices, and let r be a multivariate, zero mean,

Gaussian random variable with covariance matrix S. The third moment of r
is given by

E{[Tr-[rTAr-]} = X ciAjk Elrirjrk} (C-1)
i,j,k

Now

1 f ... f ri rj rk e rT S-lr/2 (C-2)
E{ ri rj rk } = q (21C) n det(S)

where r has n elements. Let y Br be such that its covariance, given by cov(y),
is a diagonal matrix with ones on the diagonal:

jk = [cov(y-)Ijk = BjaBkbSab (C-3)
a,b

Since r = Dy with D = B-1,

Sjk = X DjaDka (C-4)
a
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Now consider E{ Yi Yj Yk } given by an integral like Equation (C-2) with S

diagonal. If all the i,j,k are different, the integral is zero (mean of a first order

Gaussian). If two indices are the same and one different the integral is again

zero for the same reason applied to the one different index. Finally, if all

three indices are the same, the integral is zero as the third moment of a first

order Gaussian [18]. Since r = Dy& E{ ri rj rk ) = 0 and Equation (C-1) is zero.

The fourth moment of a scalar Gaussian random variable is given by

[18]

E{yi4} = 3 cov(yi) 2  (C-5)

This implies

3 ifi=j=k=m

E{yiyjykyml = 1 ifi=j~k=m (C-6)

0 if some index is different from others

Substituting the known relation for ri gives

E{rarbrcrd} = E{ DaiyiY Dajyjy Dakyk Damym}
i k m

= 3 1 DaiDbiDciDdi + X DaiDbiDckDdk
i i k~i

+ Y I DaiDbkDciDdk+y, Y DaiDbkDckDdi
i ki i k~i

= SabScd + SacSbd + SadSbc (C-7)

Equation (C-7) may then be generalized to

E{ [rTAr] [rTB"] = E{ Aab rarb I Bcd rcrd
a,b c,d

= AabBcd E{ra rb rc rd}

a,b,c,d
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= X AabBcd [SabScd + SacSbd + SadSbc]
a,b,c,d

= [1 aabSab ] [X BcdScd I + 2 1 AabBcdSacSbd
a,b cd a,b,c,d

= [tr(SA)] [tr(SB)] + 2 tr[SASBI (C-8)

The fact that the third moment is zero and Equation (C-8) are now used

to derive Equation (6.6-4) from Equation (6.6-3). The explicit dependence of r
and S on tk and a will be left out on the right hand side for clarity. Inserting
Equation (6.6-2) into the term within the summation in Equation (6.6-3) gives

the following

-: 
S _ 

'a" - =T S 1 a r

a (z(tk) I zk-l'-) a((Z(tk) I zk-; 1 rE I =]
a Xi  a j as a j a [ S 0

+ [S-1 S-1 ] [rTSI- r]4 rWS- r a
+ 1 tr [S-1]as tr [S-1]as

1 T -1 O SS
- [rTS4-] [rTS-1- s-l_

S[rTS- I S -1  SSl-1 r

1 !T -1as Si r 1T S- a!]
2s a
1 tr [S-1 as [rTS-1 ].

2 D(i - ~ Jcj1 a!: as]
+ [rTS-1 i-] tr [S-1 a

as as s

4 tr[s-'-] [rTS-1 SS aSj aS

S- 1 [rTS- S-1r tr [S-1 -- (C-9)4 - aa i  - a0j

At this point, recall that the covariance matrix S is a nonrandom

function and note that the partial derivative of the residual r with respect to

the unknown parameters is also a nonrandom function. Using these facts
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along with the moments derived in this appendix eliminates the 4 th, 5 th, 6 th,

and 7 th terms of Equation (C-9) and leaves

E D(z(t) I zk-1;) a(Z(tk) I zk-1;2) tr --T ar .]

+ [as S_1 I tr [ as_ S_1
4c at aaj (

+ 2 tr as S-1 aS

acx, acx1
+ tr [S-1 - ] tr [S-I1 --s.1

4a j Ir s- j-
1 tr [S'-1 ] tr [S-1 .s]

1 tr [S-1 a tr [S-1 - (C-10)

Thus

a 2 (Z(tk) I zk-1;o DrT aDr1 S S

E a izklJ t +  S-1 ] (C-11)
aaiaaj tTayj a + aa acx1

which becomes Equation (6.6-4) when the summation and the dependence on

tk and (x are reapplied:

N ar(tk;oq) ar(tk;.)T TAij-- I tr L-a-- a(j S(tk;9Z)-

k=O
+ 1_ aS(tk;g)0 S(tk;2).1 aS(tk;-Q0 S(tk;-Q)-l (C-12)

2 aaj (Ca2
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Appendix D

Numerical Algorithms

D.1 FORTRAN Storage Convention

An mxn matrix Z = (Zij) is stored as a vector in FORTRAN with the

first (row) index being the most rapidly varying (the opposite of the

convention in PL/I, Pascal, and other languages):

Zj = Z[j*m+iI, 1 i!m, 1 j5n

This FORTRAN storage convention is taken advantage of in the

software written to do the data analyses discussed in this thesis, when part of

a multidimensional array W(m,n,k) is sent to a subroutine. If the subroutine

expects W(m,n), and the jth mxn part of W is to be sent to the subroutine, the

calling program sends the address of W(1,1,j) to the subroutine. Some

computer languages would not allow a mismatching of dimensions between

a calling and called subroutine, but FORTRAN does, and advantage is taken

of the fact.

D.2 Symmetric Matrix Manipulation

An nxn symmetric matrix S = (Sij) with Sij = Sji is stored in lower

diagonal form as a vector in the FORTRAN software. Thus, the FORTRAN

vector is

Sij = S[ (j*(j-1))+i ], 1 < i < j5 n
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Use of lower diagonal form saves about a factor of 2 in computation time and
storage, which can be important when dealing with very large matrices.

There are subroutines to multiply non-symmetric and symmetric

matrices, with appropriate handling of the indices in each case. If a

symmetric product results from some matrix multiplication combination,

such as ZSZT, then there is one subroutine to do the whole combination, with
non-symmetric Z and symmetric S as input, and symmetric result as output.

Of great importance in estimation algorithms is the inversion of a

symmetric matrix A (such as the Fisher information matrix) and the possible
simultaneous solution for a set of linear equations with the given matrix as a

coefficient matrix (for determining adjustments in a Newton-Raphson

iteration). A private subroutine SYMINV written by Norman Brenner in
1968 was used to perform this operation. SYMINV takes as input a symmetric

matrix A stored in lower diagonal form, a right hand side vector B, and
simultaneously in place inverts the matrix A and solves for the vector X in

the equation AX = B. The operations being done in place means that the
symmetric matrix A -1 and solution vector X replace A and B, respectively, at

the end of the subroutine execution.

Gaussian elimination is used in SYMINV. In order to have the
algorithm work with the lower diagonal storage, interchange of rows and
columns is not used, and the Gaussian elimination pivots are chosen to be

diagonal elements.

The only reason interchange of rows and columns is used in Gaussian

elimination is to allow off-diagonal pivots. At a given stage of the algorithm
execution, the next pivot should be the largest element remaining in the
matrix. However, for the covariance type matrices dealt with in estimation

theory, the largest elements are likely to be on the diagonal, so it is no
restriction not to allow row and column interchange and only choose the
pivots on the diagonal.

Since the determinant of the matrix A is also needed in some

applications, Brenner's subroutine SYMINV was modified to simultaneously
calculate det(A). This is accomplished at each stage of the Gaussian

elimination by accumulating the product of the pivots, when the chosen
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pivot divides into a given row to be multiplied by a scale and subtracted from

other rows.

It was found that underflows occurred in accumulating the product of

the pivots, even with the automatic scaling described in Section D.3. Since

ln[det(A)] is desired in maximum likelihood estimation in Chapter 7, the

code was changed to accumulating the natural logarithms of the pivot

elements.

D.3 Automatic Scaling

Suppose we had to solve the equations AX = B and simultaneously

invert the symmetric matrix A. There could be numerical problems if, for
instance, the units of the Xj were badly out of scale relative to each other (such

as meters versus micro-inches, etc.). Either the units of the physical variables

in a problem could be appropriately chosen, or they can be chosen in any

arbitrary convenient fashion, and an automatic way of scaling the equations

applied, the equations solved and the matrix inverted, and then the inverse

scaling applied.

Suppose we changed units to obtain variables X'j = sjXj. There results a

new set of linear equations A'X' = B', where

1
A'ij - Aij

1
B' i  - Bi

With A being a Fisher information type of matrix, it turns out that an

appropriate automatic scaling choice is [3], [151

sj = - . _4

With this scaling, it has been found that very large matrices can be

inverted and equations solved without underflows or overflows on the

computer. A scaling subroutine is placed between the SYMINV symmetric
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matrix inversion and solution subroutine to automatically scale the equation
1

AX = B, call SYMINV, and from the solution vector X' calculate Xj = I X.

D.4 Checking Paidal Derivatives by the Difference Method

In addition to the complications of, e.g., Kalman filter code, the

algorithms of this thesis required the coding of many partial derivatives. A

mechanical way of verifying the partial derivative code by the difference

method was applied [3].

Namely, let ocio and Oil be two values of a parameter. For a given

quantity X it was checked numerically that

1 [xI -x ]
ai (xi=ail i (ai'=i 0  a(i1 -ai0  ai=aj1  X j=aj0

When errors had been eliminated with this check, the estimation code

was generally able to work correctly.
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